Skip to main content
Log in

Allelic diversification at the wx locus in landraces of Asian rice

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

To examine continuous variation of amylose levels in Asian rice (Oryza sativa) landraces, the five putative alleles (Wx a, Wx in, Wx b, Wx op, and wx) at the wx locus were investigated in near-isogenic lines (NILs). Apparent amylose levels ranged from 0.5 to 29.9% in the NILs, showing a positive relation with the levels of Wx gene product, granule-bound starch synthase (GBSS) as well as the enzymatic activity per milligram starch granule. Only opaque (Wx op) accessions had an enzymatic activity per GBSS that was reduced to half the level of the others. Nucleotide sequences in the Wx gene were compared among 18 accessions harboring the five different alleles. Each of the Wx alleles had a unique replacement, frame-shift or splice donor site mutation, suggesting that these nucleotide changes could be reflected in phenotype alterations. A molecular phylogenetic tree constructed using the Wx gene indicated that ssp. japonica forms a distinct clade, whereas ssp. indica forms different clades together with the wild progenitor. Unexpectedly, the wx allele of 160 (indica from Taiwan) joined the japonica lineage; however, comparisons using linked genes for two Taiwanese accessions revealed that the wx gene was the product of gene flow from japonica to indica. Therefore, the japonica lineage frequently included Wx in, Wx b and wx, while Wx a and Wx op were found in the other lineages, strongly suggesting that allelic diversification occurred after divergence of the two subspecies. The present results were discussed in relation to the maintenance of agronomically valuable genes in various landraces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ainsworth C, Tarvis M, Clark J (1993) Isolation and analysis of a cDNA clone encoding the small subunit of ADP-glucose pyrophosphorylase from wheat. Plant Mol Biol 23:23–33

    Article  PubMed  CAS  Google Scholar 

  • Asaoka M, Okuno K, Konishi Y, Fuwa H (1987) The effects of endosperm mutations and environmental temperature during development on the distribution of molecular weight of amylose in rice endosperm. Agric Biol Chem 51:3451–3453

    CAS  Google Scholar 

  • Ayres NM, McClung AM, Larkin PD, Bligh HFJ, Jones CA, Park WD (1997) Microsatellites and a single-nucleotide polymorphism differentiate apparent amylose classes in an extended pedigree of US rice germ plasm. Theor Appl Genet 94:773–781

    Article  CAS  Google Scholar 

  • Bao S, Corke H, Sun M (2002) Microsatellites in starch-synthesizing genes in relation to starch physicochemical properties in waxy rice (Oryza sativa L.). Theor Appl Genet 105:898–905

    Article  PubMed  CAS  Google Scholar 

  • Bligh HFJ, Larkin PD, Roach PS, Jones CA, Fu H, Park WD (1998) Use of alternate splice sites in granule-bound starch synthase mRNA from low-amylose rice varieties. Plant Mol Biol 38:407–415

    Article  PubMed  CAS  Google Scholar 

  • Cai XL, Wang ZY, Xing YY, Zhang JL, Hong MM (1998) Aberrant splicing of intron 1 leads to the heterogeneous 5′ UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content. Plant J 14:459–465

    Article  PubMed  CAS  Google Scholar 

  • Dry I, Smith A, Edwards A, Bhattacharyya M, Dunn P, Martin C (1992) Characterization of cDNAs encoding two isoforms of granule-bound starch synthase which show differential expression in developing storage organs of pea and potato. Plant J 2:193–202

    PubMed  CAS  Google Scholar 

  • Dung LV, Mikami I, Amano E, Sano Y (2000) Study on the response of dull endosperm 2-2, du2-2, to two Wx alleles in rice. Breed Sci 50:215–219

    CAS  Google Scholar 

  • Eyre-Walker A, Gaut RL, Hilton H, Feldman DL, Gaut BS (1998) Investigation of the bottleneck leading to the domestication of maize. Proc Natl Acad Sci USA 95:4441–4446

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1638

    Article  PubMed  CAS  Google Scholar 

  • Frances H, Bligh J, Larkin PD, Roach PS, Jones CA, Fu H, Park WD (1998) Use of alternate splice sites in granule-bound starch synthase mRNA from low-amylose rice varieties. Plant Mol Biol 38: 407–415

    Article  PubMed  CAS  Google Scholar 

  • Heu MH (1986) Inheritance of chalkiness of brown rice found in a non glutinous cultivar “Pokhareli Mashino”. Korean J Breed 18:162–166

    Google Scholar 

  • Heu MH, Kim YK (1989) Inheritance of an opaque endosperm derived from Nepali Indica rice cultivar ‘Pokhareli Machino’. In: Iyama S, Takeda G (eds) Breeding research (the Key to the Survival of the Earth). Proceedings of the 6th international congress SABRAO, Tsukuba, pp 321–324

  • Hirano HY, Sano Y (1991) Molecular characterization of the waxy locus of rice (Oryza sativa). Plant Cell Physiol 32:989–997

    CAS  Google Scholar 

  • Hirano HY, Mochizuki K, Umeda M, Ohtsubo H, Ohtsubo E, Sano Y (1994) Retrotranspositions of a plant SINE into the wx locus during evolution. J Mol Evol 38:132–137

    Article  PubMed  CAS  Google Scholar 

  • Hirano HY, Eiguchi M, Sano Y (1998) A single base change altered the regulation of the Waxy gene at the posttranscriptional level during the domestication of rice. Mol Biol Evol 15:978–987

    PubMed  CAS  Google Scholar 

  • Inatsu O (1979) Improvement of the quality of rice in Hokkaido. J Jpn Soc Starch Sci 26:191–197

    Google Scholar 

  • Inukai T, Sako A, Hirano HY, Sano Y (2000) Analysis of intragenic recombination at wx in rice: correlation between the molecular and genetic maps within the locus. Genome 43:589–596

    Article  PubMed  CAS  Google Scholar 

  • Isshiki M, Morino K, Nakajima M, Okagaki RJ, Wessler SR, Izawa T, Shimamoto K (1998) A naturally occurring functional allele of the rice waxy locus has a GT to TT mutation at the 5′ splice site of the first intron. Plant J 15:133–138

    Article  PubMed  CAS  Google Scholar 

  • Isshiki M, Nakajima M, Satoh H, Shimamoto K. (2000) dull: rice mutants with tissue-specific effects on the splicing of the waxy pre-mRNA. Plant J 23:451–460

    Article  PubMed  CAS  Google Scholar 

  • Juliano BO (1971) A simplified assay for milled-rice amylose. Cer Sci Today 16:334–340

    Google Scholar 

  • Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35:25–34

    Article  PubMed  CAS  Google Scholar 

  • Kumar I, Khush GS (1986) Gene dosage effects of amylose content in rice endosperm. Jpn J Genet 61:559–568

    Article  Google Scholar 

  • Kumar I, Khush GS (1987) Genetic analysis of different amylose levels in rice. Crop Sci 27:1167–1172

    Article  Google Scholar 

  • Larkin PD, Park WD (1999) Transcript accumulation and utilization of alternate and non-consensus splice sites in rice granule-bound starch synthase are temperature-sensitive and controlled by a single-nucleotide polymorphism. Plant Mol Biol 40:719–727

    Article  PubMed  CAS  Google Scholar 

  • Leiloir LF, de Rongine Fekete MA, Cardini CE (1961) Starch and oligosaccharide synthesis from uridine diphosphate glucose. J Biol Chem 236:636–641

    Google Scholar 

  • Li HW, Wu HP, Chu MY (1968) Further studies the interlocus recombination of the glutinous of rice. Bot Bull Acad Sin 9:22–26

    Google Scholar 

  • Macdonald FD, Preiss J (1985) Partial purification and characterization of granule-bound starch synthases from normal and waxy maize. Plant Physiol 78:849–852

    Article  PubMed  CAS  Google Scholar 

  • McKenzie KS, Rutger JN (1983) Genetic analysis of amylose content, alkali spreading and grain dimension in rice. Crop Sci 23:306–313

    Article  CAS  Google Scholar 

  • Mikami I, Aikawa M, Hirano HY, Sano Y (1999) Altered tissue-specific expression at the Wx gene of the opaque mutants in rice. Euphytica 105:91–99

    Article  CAS  Google Scholar 

  • Mikami I, Dung LV, Hirano HY, Sano Y (2000) Effects of the two most common Wx alleles on different genetic backgrounds in rice. Plant Breed 119:505–508

    Article  CAS  Google Scholar 

  • Murray MG, Thomson MF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Francisco PB Jr, Hosaka Y, Sato A, Sawada T, Kubo A, Fujita N (2005) Essential amino acids of starch synthase IIa differentiate amylopectin structure and starch quality between japonica and indica rice varieties. Plant Mol Biol 58:213–227

    Article  PubMed  CAS  Google Scholar 

  • Nelson OE (1968) The waxy locus in maize. II. The location of the controlling element alleles. Genetics 60:507–524

    PubMed  CAS  Google Scholar 

  • Nelson OE, Chourey PS, Chang MT (1978) Nucleoside diphosphate sugar-starch glucosyl transferase activity of wx starch granules. Plant Physiol 62:383–386

    PubMed  CAS  Google Scholar 

  • Oka HI (1974) Experimental studies on the origin of cultivated rice. Genetics 78:475–486

    PubMed  CAS  Google Scholar 

  • Oka HI (1988) Indica-Japonica differentiation of rice cultivars. In: Oka HI (ed) Origin of cultivated rice. JSSP/Elsevier, Tokyo/Amsterdam, pp 141–179

    Google Scholar 

  • Olsen KM, Purugganan MD (2002) Molecular evidence on the origin and evolution of glutinous rice. Genetics 162:941–950

    PubMed  CAS  Google Scholar 

  • Olsen KM, Caicedo AL, Polato N, McClung A, McCouch S, Purugganan M (2006) Selection under domestication: evidence for a sweep in the rice waxy genomic region. Genetics 173:975–983

    Article  PubMed  CAS  Google Scholar 

  • Pooni HS, Kumar I, Khush GS (1993) Genetical control of amylose content in a diallel set of rice crosses. Heredity 70:603–613

    Article  Google Scholar 

  • Preiss J (1991) Biology and molecular biology of starch synthesis and its regulation. Oxf Surv Plant Mol Cell Biol 7:59–114

    CAS  Google Scholar 

  • Resurreccion AP, Villareal CP, Parco A, Second G, Juliano BO (1994) Classification of cultivated rices into indica and japonica types by the isozyme, RFLP and two milled-rice methods. Theor Appl Genet 89:14–18

    Article  CAS  Google Scholar 

  • Saitoh K, Onishi K, Mikami I, Thidar K, Sano Y (2004) Allelic diversification at the C (OsC1) locus of wild and cultivated rice: nucleotide changes associated with phenotypes. Genetics 168:997–1007

    Article  PubMed  CAS  Google Scholar 

  • Sano Y (1984) Differential regulation of waxy gene expression in rice endosperm. Theor Appl Genet 64:467–473

    Google Scholar 

  • Sato Y, Nishio T (2003) Mutation detection in rice waxy mutants by PCR-RF-SSCP. Theor Appl Genet 107:560–567

    Article  PubMed  CAS  Google Scholar 

  • Sano Y, Katsumata M, Amano E (1985) Correlations between the amounts of amylose and wx protein in rice endosperm. SABRAO J 17:121–127

    Google Scholar 

  • Sano Y, Katsumata M, Okuno K (1986) Genetic studies of speciation in cultivated rice. 5. Inter- and intraspecific differentiation in the waxy gene expression of rice. Euphytica 35:1–9

    Article  Google Scholar 

  • Sano Y, Hirano HY, Nishimura M (1991) Evolutionary significance of differential regulation at the wx locus of rice. In: IRRI (eds) Rice genetics II, Manila, pp 11–20

  • Sato H, Suzuki Y, Sakai M, Imbe T (2002) Molecular characterization of Wx-mq, a novel mutant gene for low-amylose content in endosperm of rice (Oryza sativa L.). Breed Sci 52:131–135

    Article  CAS  Google Scholar 

  • Schall BA, Gaskin JF, Caicedo AL (2003) Phylogeography, haplotype trees and invasive plant species. J Hered 94:197–204

    Article  Google Scholar 

  • Smith AM, Denyer K, Martin C (1997) The synthesis of the starch granule. Annu Rev Plant Physiol Plant Mol Biol 48:67–87

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (1998) PAUP*: Phylogenetic Analysis Using Parsimony (* and Other Methods). Sinauer Associates, Sunderland

    Google Scholar 

  • Tan YF, Li JX, Yu SB, Xing YZ, Xu CG Zhang QF (1999) The tree important trait for cooking and eating quality of rice grain are controlled by a single locus in an elite rice hybrid, Shanyou 63. Theor Appl Genet 100:697–712

    Google Scholar 

  • Tanaka K, Ohnishi S, Kishimoto N, Kawasaki T, Baba T (1995) Structure, organization, and chromosomal location of the gene encoding a form of rice soluble starch synthase. Plant Physiol 108:677–683

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Tian R, Jiang GH, Shen LH, Wang LQ, He YQ (2005) Mapping quantitative trait loci underlying the cooking and eating quality of rice using a DH population. Mol Breed 15:117–124

    Article  CAS  Google Scholar 

  • Umeda M, Ohtsubo H, Ohtsubo E (1991) Diversification of the rice Waxy gene by insertion of mobile DNA elements into introns. Jpn J Genet 66:569–586

    Article  PubMed  CAS  Google Scholar 

  • Umemoto T, Terashima K (2002) Activity of granule-bound starch synthase is an important determinant of amylose content in rice endosperm. Funct Plant Biol 29:1121–1124

    Article  CAS  Google Scholar 

  • Vigouroux Y, Mitchell S, Matsuoka Y, Hamblin M, Kresovich S, Smith JSC, Jaqueth J, Smith OS, Doebley J (2005) An analysis of genetic diversity across the maize genome using microsatellites. Genetics 169:1617–1630

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Wu ZL, Xing YY, Zheng FG, Guo XL, Zhang WG, Hong MM (1990) Nucleotide sequence of rice waxy gene. Nucleic Acids Res 18:5898

    Article  Google Scholar 

  • Wang ZY, Zheng FQ, Shen GZ, Gao JP, Snustad DP, Li MG, Zhang JL, Hong MM (1995) The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J 7:613–622

    Article  PubMed  CAS  Google Scholar 

  • Wang LQ, Liu WJ, Xu Y, He YQ, Luo LJ, Xing YZ, Xu CG, Zhang QF (2007) Genetic basis of 17 traits and viscosity parameters characterizing the eating and cooking quality of rice grain. Theor Appl Genet 115:463–476

    Article  PubMed  CAS  Google Scholar 

  • Weil CF, Marillonnet S, Burr B, Wessler SR (1992) Changes in state of the Wx-m5 allele of Maize are due to intragenic transposition of Ds. Genetics 130:175–185

    PubMed  CAS  Google Scholar 

  • Wessler SR, Baran G, Varagona M, Dellaporta SL (1986) Excision of Ds produces waxy proteins with a range of enzymatic activities. EMBO J 5:2427–2432

    PubMed  CAS  Google Scholar 

  • Yamanaka S, Nakamura I, Watanabe KN, Sato Y (2004) Identification of SNPs in the waxy gene among glutinous rice cultivars and their evolutionary significance during the domestication process of rice. Theor Appl Genet 108:1200–1204

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a research fellowship from the Japan Society for the Promotion of Science (JSPS). We thank Dr. G.S. Khush for providing the seed samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Mikami.

Additional information

Communicated by E. Guiderdoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikami, I., Uwatoko, N., Ikeda, Y. et al. Allelic diversification at the wx locus in landraces of Asian rice. Theor Appl Genet 116, 979–989 (2008). https://doi.org/10.1007/s00122-008-0729-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0729-z

Keywords

Navigation