Skip to main content
Log in

Genome-wide analysis of genes targeted by qLTG3-1 controlling low-temperature germinability in rice

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The control of seed germination under environmental conditions, where plants will be grown, is important for the adaptability of plants. Low-temperature is one of the most common environmental stress factors that affect plant growth and development and places a major limit on crop productivity in cultivated areas. Previously, qLTG3-1, a major quantitative trait locus controlling low-temperature tolerance at the germination stage in rice (called low-temperature germinability) was identified, which encodes a protein of unknown function. To identify genes targeted by qLTG3-1, a genome-wide expression profiling analysis using the 44 K Rice Oligo microarray was performed. Because the expression of qLTG3-1 was dramatically increased at 1 day after incubation, the expression profiles at this time were compared between Hayamasari, which has a loss-of-function qLTG3-1 allele, and a near isogenic line with a functional allele. A total of 4,587 genes showed significant differences between their expression levels in the two lines. Most of these genes might be involved in the process of seed germination itself, and then a focus was made on qLTG3-1 dependently induced or suppressed genes, defined as ‘qLTG3-1 dependent’ genes. Twenty-nine ‘qLTG3-1 dependent’ genes with diverse functions were categorized, implying that disruption of cellular homeostasis leads to a wide range of metabolic alterations and diverse cross-talk between various signaling pathways. In particular, genes involved in defense responses were up-regulated by qLTG3-1, indicating that qLTG3-1 expression is required for the expression of defense response genes in low-temperature germinability in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274

    Article  CAS  PubMed  Google Scholar 

  • Baskin JM, Baskin CC (1998) Seeds: ecology, biogeography and evolution of dormancy and germination. Academic Press, San Diego

    Google Scholar 

  • Bentsink L, Koornneef M (2008) Seed dormancy and germination. The Arabidopsis Book, American Society of Plant Biologists, Rockville, MD. doi:10.1199/tab.0119

    Google Scholar 

  • Bethke PC, Libourel IG, Aoyama N, Chung YY, Still DW, Jones RL (2007) The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol 143:1173–1188

    Article  CAS  PubMed  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  CAS  PubMed  Google Scholar 

  • Bewley JD, Black M (1994) Seeds: physiology of development and germination. Plenum Press, New York

    Google Scholar 

  • Cartwright D, Langcake P, Pryce RJ, Leworthy DP, Ride JP (1977) Chemical activation of host defence mechanisms as a basis for crop protection. Nature 267:511–513

    Article  CAS  Google Scholar 

  • Chen F, Bradford KJ (2000) Expression of an expansin is associated with endosperm weakening during tomato seed germination. Plant Physiol 124:1265–1274

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Nonogaki H, Bradford KJ (2002) A gibberellin-regulated xyloglucan endotransglycosylase gene is expressed in the endosperm cap during tomato seed germination. J Exp Bot 53:215–223

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Peng B, Xing Z, Xu G, Yu B, Zhang Q (2002) Molecular dissection of seedling-vigor and associated physiological traits in rice. Theor Appl Genet 105:745–753

    Article  CAS  PubMed  Google Scholar 

  • Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3:REVIEWS3004

    Google Scholar 

  • Donohue K (2009) Completing the cycle: maternal effects as the missing link in plant life histories. Philos Trans R Soc Lond B Biol Sci 364:1059–1074

    Article  CAS  PubMed  Google Scholar 

  • Donohue K, Dorn L, Griffith C, Kim E, Aguilera A, Polisetty CR, Schmitt J (2005) The evolutionary ecology of seed germination of Arabidopsis thaliana: variable natural selection on germination timing. Evolution 59:758–770

    PubMed  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    CAS  PubMed  Google Scholar 

  • Fujino K, Sekiguchi H (2005a) Identification of QTLs conferring genetic variation for heading date among rice varieties at the northern-limit of rice cultivation. Breed Sci 55:141–146

    Article  CAS  Google Scholar 

  • Fujino K, Sekiguchi H (2005b) Mapping of QTLs conferring extremely early heading in rice (Oryza sativa L.). Theor Appl Genet 111:393–398

    Article  CAS  PubMed  Google Scholar 

  • Fujino K, Sekiguchi H (2008) Mapping of quantitative trait loci controlling heading date among rice cultivars in the northernmost region of Japan. Breed Sci 58:367–373

    Article  CAS  Google Scholar 

  • Fujino K, Sekiguchi H, Sato T, Kiuchi H, Nonoue Y, Takeuchi Y, Ando T, Lin SY, Yano M (2004) Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Theor Appl Genet 108:794–799

    Article  CAS  PubMed  Google Scholar 

  • Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije MW, Sekiguchi H (2008a) NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genomics 279:499–507

    Article  CAS  PubMed  Google Scholar 

  • Fujino K, Sekiguchi H, Matsuda Y, Sugimoto K, Ono K, Yano M (2008b) Molecular identification of a major quantitative trait locus, qLTG3–1, controlling low-temperature germinability in rice. Proc Natl Acad Sci USA 105:12623–12628

    Article  CAS  PubMed  Google Scholar 

  • Fukuda H (2000) Programmed cell death of tracheary elements as a paradigm in plants. Plant Mol Biol 44:245–253

    Article  CAS  PubMed  Google Scholar 

  • Holdsworth MJ, Finch-Savage WE, Grappin P, Job D (2008) Post-genomics dissection of seed dormancy and germination. Trends Plant Sci 13:7–13

    Article  CAS  PubMed  Google Scholar 

  • Howles PA, Sewalt V, Paiva NL, Elkind Y, Bate NJ, Lamb C, Dixon RA (1996) Overexpression of L-phenylalanine ammonia-lyase in transgenic tobacco plants reveals control points for flux into phenylpropanoid biosynthesis. Plant Physiol 112:1617–1624

    CAS  PubMed  Google Scholar 

  • Iwata M, Suzuki Y, Watanabe T, Mase S, Sekizawa Y (1980) Effect of probenazole on the activities of enzymes related to the resistant reaction in rice plant. Ann Phytopathol Soc Jpn 46:297–306

    Google Scholar 

  • Ji SL, Jiang L, WY H, Zhang WW, Liu X, Liu SJ, Chen LM, Zhai HQ, Wan JM (2009) Quantitative trait loci mapping and stability for low temperature germination ability of rice. Plant Breed 128:387–392. doi:10.1111/j.1439-0523.2008.01533.x

    Google Scholar 

  • Jiang L, Liu S, Hou M, Tang J, Chen L, Zhai H, Wan J (2006) Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice (Oryza sativa L.). Field Crops Res 98:68–75

    Article  Google Scholar 

  • Kim ST, Cho KS, Yu S, Kim SG, Hong JC, Han CD, Bae DW, Nam MH, Kang KY (2003) Proteomic analysis of differentially expressed proteins induced by rice blast fungus and elicitor in suspension-cultured rice cells. Proteomics 3:2368–2378

    Article  CAS  PubMed  Google Scholar 

  • Kim ST, Kim SG, Kang YH, Wang Y, Kim JY, Yi N, Kim JK, Rakwal R, Koh HJ, Kang KY (2008) Proteomics analysis of rice lesion mimic mutant (spl1) reveals tightly localized probenazole-induced protein (PBZ1) in cells undergoing programmed cell death. J Proteome Res 7:1750–1760

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S, Kojima K, Suzuki K, Ozaki K, Higo K (2004) Rice proteome database based on two-dimensional polyacrylamide gel electrophoresis: its status in 2003. Nucleic Acids Res 32:D388–D392

    Article  CAS  PubMed  Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36

    Article  CAS  PubMed  Google Scholar 

  • Lam E (2004) Controlled cell death, plant survival and development. Nat Rev Mol Cell Biol 5:305–315

    Article  CAS  PubMed  Google Scholar 

  • Lane BG (2000) Oxalate oxidases and differentiating surface structure in wheat: germins. Biochem J 349:309–321

    Article  CAS  PubMed  Google Scholar 

  • Lane BG, Dunwell JM, Ray JA, Schmitt MR, Cuming AC (1993) Germin, a protein marker of early plant development, is an oxalate oxidase. J Biol Chem 268:12239–12242

    CAS  PubMed  Google Scholar 

  • Lin YZ, Chen HY, Kao R, Chang SP, Chang SJ, Lai EM (2008) Proteomic analysis of rice defense response induced by probenazole. Phytochemistry 69:715–728

    Article  CAS  PubMed  Google Scholar 

  • Maher EA, Bate NJ, Ni W, Elkind Y, Dixon RA, Lamb CJ (1994) Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products. Proc Natl Acad Sci USA 91:7802–7806

    Article  CAS  PubMed  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158

    Article  CAS  PubMed  Google Scholar 

  • Midoh N, Iwata M (1996) Cloning and characterization of a probenazole-inducible gene for an intracellular pathogenesis-related protein in rice. Plant Cell Physiol 37:9–18

    CAS  PubMed  Google Scholar 

  • Miura K, Lin SY, Yano M, Nagamine T (2001) Mapping quantitative trait loci controlling low temperature germinability in rice (Oryza sativa L.). Breed Sci 51:293–299

    Article  CAS  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  CAS  PubMed  Google Scholar 

  • Neeraja CN, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard BC, Septiningsih EM, Vergara G, Sanchez D, Xu K, Ismail AM, Mackill DJ (2007) A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet 115:767–776

    Article  CAS  PubMed  Google Scholar 

  • Nonogaki H (2006) Seed germination—the biochemical and molecular mechanisms. Breed Sci 56:93–105

    Article  CAS  Google Scholar 

  • Nonogaki H, Gee OH, Bradford KJ (2000) A germination-specific endo-beta-mannanase gene is expressed in the micropylar endosperm cap of tomato seeds. Plant Physiol 123:1235–1246

    Article  CAS  PubMed  Google Scholar 

  • Nonogaki H, Chen F, Bradford KJ (2007) Mechanisms and genes involved in germination sensu stricto. In: Bradford KJ, Nonogaki H (eds) Seed development, dormancy and germination. Blackwell, Oxford, pp 264–304

    Chapter  Google Scholar 

  • Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15:1591–1604

    Article  CAS  PubMed  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134:1642–1653

    Article  CAS  PubMed  Google Scholar 

  • Sauveplane V, Kandel S, Kastner PE, Ehlting J, Compagnon V, Werck-Reichhart D, Pinot F (2009) Arabidopsis thaliana CYP77A4 is the first cytochrome P450 able to catalyze the epoxidation of free fatty acids in plants. FEBS J 276:719–735

    Article  CAS  PubMed  Google Scholar 

  • Shadle GL, Wesley SV, Korth KL, Chen F, Lamb C, Dixon RA (2003) Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase. Phytochemistry 64:153–161

    Article  CAS  PubMed  Google Scholar 

  • Shimono M, Yazaki J, MNakamura K, Kishimoto N, Kikuchi S, Iwano M, Yamamoto K, Sakata K, Sasaki T, Nishiguchi M (2003) cDNA microarray analysis of gene expression in rice plants treated with probenazole, a chemical inducer of disease resistance. J Gen Plant Pathol 69:76–82

    Article  CAS  Google Scholar 

  • Shimura K, Okada A, Okada K, Jikumaru Y, Ko KW, Toyomasu T, Sassa T, Hasegawa M, Kodama O, Shibuya N, Koga J, Nojiri H, Yamane H (2007) Identification of a biosynthetic gene cluster in rice for momilactones. J Biol Chem 282:34013–34018

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Sopory SK, Kavi Kishor PB (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388:1–13

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A, Kawasaki T, Henmi K, Shi IK, Kodama O, Satoh H, Shimamoto K (1999) Lesion mimic mutants of rice with alterations in early signaling events of defense. Plant J 17:535–545

    Article  CAS  PubMed  Google Scholar 

  • Tsunezuka H, Fujiwara M, Kawasaki T, Shimamoto K (2005) Proteome analysis of programmed cell death and defense signaling using the rice lesion mimic mutant cdr2. Mol Plant Microbe Interact 18:52–59

    Article  CAS  PubMed  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Wilczek AM, Roe JL, Knapp MC, Cooper MD, Lopez-Gallego C, Martin LJ, Muir CD, Sim S, Walker A, Anderson J, Egan JF, Moyers BT, Petipas R, Giakountis A, Charbit E, Coupland G, Welch SM, Schmitt J (2009) Effects of genetic perturbation on seasonal life history plasticity. Science 323:930–934

    Article  CAS  PubMed  Google Scholar 

  • Wu CT, Leubner-Metzger G, Meins F Jr, Bradford KJ (2001) Class I beta-1, 3-glucanase and chitinase are expressed in the micropylar endosperm of tomato seeds prior to radicle emergence. Plant Physiol 126:1299–1313

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZH, Qu XS, Wan S, Chen LH, Zhu YG (2005) Comparison of QTL controlling seedling vigour under different temperature conditions using recombinant inbred lines in rice (Oryza sativa). Ann Bot (Lond) 95:423–429

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Nagamura (National Institute of Agrobiological Sciences, Japan) for support with the 44 K oligo microarray analysis. This work was supported in part by grants from the Ministry of Agriculture, Forestry and Fisheries of Japan (Integrated research project for plant, insect and animal using genome technology QT-3007 and Genomics for Agricultural Innovation QTL-1005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Fujino.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 229 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujino, K., Matsuda, Y. Genome-wide analysis of genes targeted by qLTG3-1 controlling low-temperature germinability in rice. Plant Mol Biol 72, 137–152 (2010). https://doi.org/10.1007/s11103-009-9559-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9559-x

Keywords

Navigation