Skip to main content
Log in

Identification of an active transposon in intact rice plants

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

A transposable element that is active in intact plants has been identified in rice (Oryza sativa L.). The 607-bp element itself, termed nonautonomous DNA-based active rice transposon (nDart), has no coding capacity. It was found inserted in the gene encoding Mg-protoporphyrin IX methyltransferase in a chlorophyll-deficient albino mutant isolated from backcross progeny derived from a cross between wild-type japonica varieties. The nDart has 19-bp terminal inverted repeats (TIRs) and, when mobilized, generates an 8-bp target-site duplication (TSD). At least 13 nDart elements were identified in the genome sequence of the japonica cultivar Nipponbare. Database searches identified larger elements, termed DNA-based active rice transposon (Dart) that contained one ORF for a protein that contains a region with high similarity to the hAT dimerization motif. Dart shares several features with nDart, including identical TIRs, similar subterminal sequences and the generation of an 8-bp TSD. These shared features indicate that the nonautonomous element nDart is an internal deletion derivative of the autonomous element Dart. We conclude that these active transposon systems belong to the hAT superfamily of class II transposons. Because the transposons are active in intact rice plants, they should be useful tools for tagging genes in studies of functional genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269

    Google Scholar 

  • Block MA, Tewari AK, Albrieux C, Marechal E, Joyard J (2002) The plant S-adenosyl-l-methionine:Mg-protoporphyrin IX methyltransferase is located in both envelope and thylakoid chloroplast membranes. Eur J Biochem 269:240–248

    Google Scholar 

  • Bollivar DW, Jiang Z-Y, Bauer CE, Beale S (1994) Heterologous expression of the bchM gene product from Rhodobacter capsulatus and demonstration that it encodes S-adenosyl-l-methionine:Mg-protoporphyrin IX methyltransferase. J Bacteriol 176:5290–5296

    Google Scholar 

  • Calvi BR, Hong TJ, Findley SD, Gelbart WM (1991) Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator and Tam3. Cell 66:465–471

    Google Scholar 

  • Chen CH, Oishi K, Kloeckner-Gruissem B, Freeling M (1987) Organ-specific expression of maize Adh1 is altered after a Mu transposon insertion. Genetics 116:469–477

    Google Scholar 

  • Essers L, Adolphs RH, Kunze R (2000) A highly conserved domain of the maize Activator transposase is involved in dimerization. Plant Cell 12:211–223

    Google Scholar 

  • Fedoroff N (1989) In: Berg DE, Howe MH (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp375–411

  • Fedoroff N (2000) Transposons and genome evolution in plants. Proc Natl Acad Sci USA 97:7002–7007

    Article  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    Article  CAS  PubMed  Google Scholar 

  • Fujino K, Sekiguchi H, Sato T, Kiuchi H, Nonoue Y, Takeuchi Y, Ando T, Lin SY, Yano M (2004) Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Theor Appl Genet 108:794–799

    Article  CAS  PubMed  Google Scholar 

  • Gibson LCD, Hunter CN (1994) The bacteriochlorophyll biosynthesis gene, bchM, of Rhodobacter sphaeroides encodes S-adenosyl-l-methionine:Mg-protoporphyrin IX methyltransferase. FEBS Lett 352:127–130

    Google Scholar 

  • Gierl A, Saedler H, Peterson PA (1989) Maize transposable elements. Annu Rev Genet 23:71–85

    Google Scholar 

  • Harushima Y et al (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148:479–494

    PubMed  Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788

    Article  CAS  PubMed  Google Scholar 

  • Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA transposon family in rice. Nature 21:163–167

    Google Scholar 

  • Jordan IK, McDonald JF (1999) Tempo and mode of Ty element evolution in Saccharomyces cerevisiae. Genetics 151:1341–1351

    Google Scholar 

  • Kidwell MG, Lisch D (1997) Transposable elements as sources of variation in animals and plants. Proc Natl Acad Sci USA 9:7704–7711

    Google Scholar 

  • Kidwell MG, Lisch D (2000) Transposable elements and host genome evolution. Trends Ecol Evol 15:95–99

    Article  PubMed  Google Scholar 

  • Kikuchi K, Terauchi K, Wada M, Hirano H (2003) The plant MITE mPing is mobilized in anther culture. Nature 421:167–170

    Article  CAS  PubMed  Google Scholar 

  • Komatsu M, Shimamoto K, Kyozuka J (2003) Two-step regulation and continuous retrotransposition of the rice LINE-type retrotransposon Karma. Plant Cell 15:1934–1944

    Google Scholar 

  • Mao L, Wood TC, Yu Y, Budiman MA, Tomkins J, Woo S-S, Sasinowski M, Presting G, Frisch D, Goff S, Dean RA, Wing RA (2000) Rice transposable elements: A survey of 73,000 sequence-tagged-connectors. Genome Res 10:982–990

    Google Scholar 

  • McCouch SR et al (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207

    CAS  PubMed  Google Scholar 

  • Nakazaki T, Okumoto Y, Horibata A, Yamahira S, Teraishi M, Nishida H, Inoue H, Tanisaka T (2003) Mobilization of a transposon in the rice genome. Nature 421:170–172

    Article  CAS  PubMed  Google Scholar 

  • Nordborg M, Walbot V (1995) Estimating allelic diversity generated by excision of different transposon types. Theor Appl Genet 90:771–775

    Google Scholar 

  • Rubin E, Lithwick G, Levy AA (2001) Structure and evolution of the hAT transposon superfamily. Genetics 158:949–957

    Google Scholar 

  • Sasaki T, Matsumoto T, Yamamoto K et al (2002) The genome sequence and structure of rice chromosome 1. Nature 420:312–316

    Article  CAS  PubMed  Google Scholar 

  • Schwarz-Sommer Z, Gierl A, Cuypers H, Peterson PA, Seadler H (1985) Plant transposable elements generate the DNA sequence diversity needed in evolution. EMBO J 4:591–597

    Google Scholar 

  • Smith CA, Suzuki JY, Bauer CE (1996) Cloning and characterization of the chlorophyll biosynthesis gene chlM from Synechocystis PCC 6803 by complementation of a bacteriochlorophyll biosynthesis mutant of Rhodobacter capsulatus. Plant Mol Biol 30:1307–1314

    Google Scholar 

  • Sullivan TD, Schiefelbein JW, Nelson OE Jr (1989) Tissue-specific effects of maize Bronze gene promoter mutations induced by Ds1 insertion and excision. Dev Genet 10:412–424

    Google Scholar 

  • Turcotte K, Srinivasan S, Bureau T (2001) Survey of transposable elements from rice genomic sequences. Plant J 25:169–179

    Google Scholar 

  • Walbot V (1992) Strategies for mutagenesis and gene cloning using transposon tagging and T-DNA insertional mutagenesis. Annu Rev Plant Physiol Plant Mol Biol 43:49–82

    Article  Google Scholar 

  • Wessler SR, Baran G, Varagona M, Dellaporta SL (1986) Excision of Ds produces Waxy with a range of enzymatic activities. EMBO J 5:2427–2432

    Google Scholar 

  • Zhang X, Feschotte C, Zhang Q, Jiang N, Eggleston WB, Wessler SR (2001) P instability factor: An active maize transposon system associated with the amplification of Tourist-like MITEs and a new superfamily of transposases. Proc Natl Acad Sci USA 98:12572–12577

    Google Scholar 

Download references

Acknowledgements

We thank Seiko Okubo (Hokkaido Green-Bio Institute) for technical assistance with DNA analysis, and Koji Saito (National Agricultural Research Center for Hokkaido Region) for providing the DNA of IR36.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Fujino.

Additional information

Communicated by M.-A. Grandbastien

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujino, K., Sekiguchi, H. & Kiguchi, T. Identification of an active transposon in intact rice plants. Mol Genet Genomics 273, 150–157 (2005). https://doi.org/10.1007/s00438-005-1131-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-005-1131-z

Keywords

Navigation