Skip to main content

Advertisement

Log in

Effect of long-term thermal challenge on the Antarctic notothenioid Notothenia rossii

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The thermal stability of the Antarctic Ocean raises questions concerning the metabolic plasticity of Antarctic notothenioids to changes in the environmental temperature. In this study, Notothenia rossii survived 90 days at 8 °C, and their condition factor level was maintained. However, their hepatosomatic (0.29×) index decreased, indicating a decrease in nutrient storage as a result of changes in the energy demands to support survival. At 8 °C, the plasma calcium, magnesium, cholesterol, and triglyceride concentrations decreased, whereas the glucose (1.91×) and albumin (1.26×) concentrations increased. The main energy substrate of the fish changed from lipids to glucose due to a marked increase in lactate dehydrogenase activity, as demonstrated by an increase in anaerobic metabolism. Moreover, malate dehydrogenase activity increased in all tissues, suggesting that fish acclimated at 8 °C exhibit enhanced gluconeogenesis. The aerobic demand increased only in the liver due to an increase (2.23×) in citrate synthase activity. Decreases in the activities of superoxide dismutase, catalase, and glutathione-S-transferase to levels that are most likely sufficient at 8 °C were observed, establishing a new physiological activity range for antioxidant defense. Our findings indicate that N. rossii has some compensatory mechanisms that enabled its long-term survival at 8 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abele D, Puntarulo S (2004) Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp Biochem Physiol - A Mol Integr Physiol 138:405–415. https://doi.org/10.1016/j.cbpb.2004.05.013

    Article  CAS  PubMed  Google Scholar 

  • Abele D, Tesch C, Wencke P, Pörtner HO (2001) How do oxidative stress parameters relate to thermal tolerance in the Antarctic bivalve Yoldia eightsi? Antarct Sci 13:111–118

    Article  Google Scholar 

  • Adamu KM, Kori-Siakpere O (2011) Effects of sublethal concentrations of tobacco (Nicotiana Tobaccum) leaf dust on some biochemical parameters of hybrid catfish (Clarias gariepinus and Heterobranchus bidorsalis). Braz Arch Biol Technol 54:183–196

    Article  Google Scholar 

  • Allain CC, Poon LS, Chan CSG, Richmond W, Fu PC (1974) Enzymatic determination of total serum cholesterol. Clin Chem 20:470–475

    CAS  PubMed  Google Scholar 

  • Almeida-Val VMF, Val AL, Duncan WP, Souza FCA, Paula-Silva MN, Land S (2000) Scaling effects on hypoxia tolerance in the Amazon fish Astronotus ocellatus (Perciformes: Cichlidae): contribution of tissue enzyme levels. Comp Biochem Physiol 125:219–226

    Article  CAS  Google Scholar 

  • Andreeva AM (2010) The role of structural organization of blood plasma proteins in the stabilization of water metabolism in bony fish (Teleostei). J Appl Ichthyol 50:552–558

    Article  Google Scholar 

  • Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol 42:517–525. https://doi.org/10.1093/icb/42.3.517

    Article  CAS  PubMed  Google Scholar 

  • Beutler E (1975) Red cell metabolism: a manual of biochemical methods. Grune & Stratton, New York, p 160

    Google Scholar 

  • Bidinoto PM, Moraes G, Souza RHS (1997) Hepatic glycogen and glucose in eight tropical fresh water teleost fish: a procedure for field determinations of micro samples. Boletim Técnico CEPTA Pirassununga 10:53–60

    Google Scholar 

  • Bilyk KT, De Vries AL (2011) Heat tolerance and its plasticity in Antarctic fishes. Comp biochem physiol A 158:382–390

    Article  CAS  Google Scholar 

  • Bilyk KT, Evans CW, Devries AL (2012) Heat hardening in Antarctic notothenioid fishes. Polar Biol 35:1447–1451

    Article  Google Scholar 

  • Blasco J, Marimón I, Viaplana I, Fernández-Borrás J (2001) Fate of plasma glucose in tissues of brown trout in vivo: effects of fasting and glucose loading. Fish Physiol Biochem 24:247–258

    Article  CAS  Google Scholar 

  • Booth DJ, Bond N, Macreadie P (2011) Detecting range shifts among Australian fishes in response to climate change. Mar Freshw Res 62:1027–1042

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brodte E, Knust R, Pörtner HO (2006) Temperature-dependent energy allocation to growth in Antarctic and boreal eelpout (Zoarcidae). Polar Biol 30:95–107. https://doi.org/10.1007/s00300-006-0165-y

    Article  Google Scholar 

  • Brodte E, Graeve M, Jacob U, Knust R, Pörtner HO (2008) Temperature-dependent lipid levels and components in polar and temperate eelpout (Zoarcidae). Fish Physiol Biochem 34:261–274

    Article  CAS  PubMed  Google Scholar 

  • Bucolo G, David H (1973) Quantitative determination of serum triglycerides by the use of enzymes. Clin Chem 19:476–482

    CAS  PubMed  Google Scholar 

  • Burchett MS (1983) Morphology and morphometry of the Antarctic Nototheniid Notothenia rossii marmorata. Brit Antarct Surv B 58:71–81

    Google Scholar 

  • Cali JP, Bowers GN, Young JDS (1973) A referee method for the determination of total calciumin serum. Clin Chem 19:1208–1213

    CAS  PubMed  Google Scholar 

  • Cali F, Riginella E, La Mesa M, Mazzoldi C (2017) Life history traits of Notothenia rossii and N. coriiceps along the southern Scotia Arc. Polar Biol. https://doi.org/10.1007/s00300-016-2066-z

  • Carney Almroth B, Asker N, Wassmur B, Rosengren M, Jutfelt F, Gräns A, Sundell K, Axelsson M, Sturve J (2015) Warmer water temperature results in oxidative damage in an Antarctic fish, the bald notothen. J Exp Mar Biol Ecol 468:130–137

    Article  CAS  Google Scholar 

  • Childress JJ, Somero GN (1979) Depth-related enzymic activities in muscle, brain and heart of deep-living pelagic marine teleosts. Mar Biol 52:273–283

    Article  CAS  Google Scholar 

  • Clarke A (1991) What is cold adaptation and how should we measure it? Am Zool 31:81–92

    Article  Google Scholar 

  • Clarke A, Murphy EJ, Meredith MP, King JC, Peck LS, Barnes DKA, Smith RC (2007) Climate change and the marine ecosystem of the western Antarctic Peninsula. Philos Trans R Soc B 362:149–166

    Article  Google Scholar 

  • Coggan R (1997) Growth:ration relationships in the antarctic fish Notothenia coriiceps Richardson maintained under different conditions of temperature and photoperiod. J Exp Mar Biol Ecol 210:23–35. https://doi.org/10.1016/S0022-0981(96)02717-7

    Article  Google Scholar 

  • Corbisier TN, Petti MAV, Skowronski RSP, Brito TAS (2004) Trophic relationships in the nearshore zone of Martel Inlet (King George Island, Antarctica): δ13C stable-isotope analysis. Polar Biol 27:75–82

    Article  Google Scholar 

  • Crawford RE (1979) Effect of starvation and experimental feeding on the proximate composition and caloric content of an antarctic teleost, Notothenia coriiceps neglecta. Comp Biochem Physiol -- Part A Physiol 62:321–326. https://doi.org/10.1016/0300-9629(79)90063-X

    Article  Google Scholar 

  • Crouch RK, Gandy SC, Kinsey G (1981) The inhibition of islet superoxide dismutase by diabetogenic drugs. Diabetes 30:235–241

    Article  CAS  PubMed  Google Scholar 

  • Dalvi RS, Das T, Debnath D, Yengkokpam S, Baruah K, Tiwari LR, Pal AK (2017) Metabolic and cellular stress responses of catfish, Horobagrus brachysoma (Günther) acclimated to increasing temperatures. J Therm Biol 65:32–40

    Article  CAS  PubMed  Google Scholar 

  • Das T, Pal AK, Chakraborty SK, Manush SM, Chatterjee N, Apte SK (2006) Metabolic elasticity and induction of heat shock protein 70 in Labeo rohita acclimated to three temperatures. Asian-Australas J Anim Sci 19:1033–1039

    Article  CAS  Google Scholar 

  • Donatti L, Fanta E (2002) Influence of photoperiod on visual prey detection in the Antarctic fish Notothenia neglecta. Antarct Sci 14:146–150. https://doi.org/10.1017/S0954102002000706

  • Donatti L, Fanta E (2007) Retinomotor movements in the Antarctic fish Trematomus newnesi Boulenger submitted to different environmental light conditions. Rev Brasil Zool 24, 457–462

  • Doumas BT, Watson WA, Biggs HG (1971) Albumin standards and the measurement of serum albumin with bromocresol green. Clin Chim Acta 31:87–96

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–335

    Article  CAS  Google Scholar 

  • Dunn JF, Johnston IA (1986) Metabolic constraints on burst-swimming in the Antarctic teleost Notothenia neglecta. Mar Biol 91:433–440

    Article  CAS  Google Scholar 

  • Eastman JT, Barrera-Oro E, Moreira E (2011) Adaptive radiation at a low taxonomic level: divergence in buoyancy of the ecologically similar Antarctic fish Notothenia coriiceps and N. rossii. Mar Ecol Prog Ser 438:195–206

    Article  Google Scholar 

  • Egginton S, Taylor EW, Wilson RW, Johnston IA, Moon TW (1991) Stress response in the Antarctic teleosts (Notothenia neglecta Nybelin and N. rossii Richardson). J Fish Biol 38:225–235

    Article  CAS  Google Scholar 

  • Enzor LA, Place SP (2014) Is warmer better? Decreased oxidative damage in notothenioid fish after long-term acclimation to multiple stressors. J Exp Biol 217:3301–3310. https://doi.org/10.1242/jeb.108431

    Article  PubMed  Google Scholar 

  • Fanta E, Rios FS, Meyer AAN, Grotzner SR, Zaleski T (2001a) Chemical and visual systems in feeding behaviour of the Antarctic fish Ophthalmolycus amberensis (Teleostei, Zoarcidae). Antarct Rec 45:27–42

  • Fanta E, Rios FS, Meyer AAN (2001b) Behaviour of the Antarctic fish Ophthalmolycus amberensis on gravel and muddy bottom. Antarct Rec 45:13–26

  • Folch J, Less M, Stanley S (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Forgati M, Kandalski PK, Herrerias T et al (2017) Effects of heat stress on the renal and branchial carbohydrate metabolism and antioxidant system of Antarctic fish. J Comp Physiol B Biochem Syst Environ Physiol 0:1–18. https://doi.org/10.1007/s00360-017-1088-3

    Article  CAS  Google Scholar 

  • Gornall AG, Bardawill CS, David MM (1949) Determination of serum protein by means of the biuret reaction. J Biol Chem 177:751–766

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Handeland S, Imsland AK, Stefansson SO (2008) The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture 283:36–42

    Article  Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, New York

    Google Scholar 

  • IPCC (2014) Climate Change 2014: impacts, adaptation and vulnerability-contributions of the working group II to the Fifth assessment report. Summary for Policymakers.

  • Javed M, Usmani N (2015) Stress response of biomolecules (carbohydrate, protein and lipid profiles) in fish Channa punctatus inhabiting river polluted by thermal power plant effluent. Saudi J Biol Sci 22:237–242

    Article  CAS  PubMed  Google Scholar 

  • Javed M, Ahmad MI, Usmani N, Ahmad M (2017) Multiple biomarker responses (serum biochemistry, oxidative stress, genotoxicity and histopathology) in Channa punctatus exposed to heavy metal loaded waste water. Sci Rep 7:1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayasundara N, Healy TM, Somero GN (2013) Effects of temperature acclimation on cardiorespiratory performance of the Antarctic notothenioid Trematomus bernacchii. Polar Biol 36:1047–1057. https://doi.org/10.1007/s00300-013-1327-3

    Article  Google Scholar 

  • Jha AK, Pal AK, Sahu NP, Kumar S, Mukherjee SC (2007) Haemato-immunological responses to dietary yeast RNA, u-3 fatty acid and b-carotene in Catla catla juveniles. Fish Shellfish Immunol 23:917–927

    Article  CAS  PubMed  Google Scholar 

  • Jobling M (1981) The influences of feeding on the metabolic rate of fishes: a short review. J Fish Biol 18:385–400

    Article  Google Scholar 

  • Johnston IA, Battram J (1993) Feeding energetics and metabolismo in demersal fish species from Antarctic, temperate and tropical environments. Mar Biol 115:7–14

    Article  Google Scholar 

  • Johnston IA, Calvo J, Guderley H, Fernandez D, Palmer L (1998) Latitudinal variation in the abundance and oxidative capacities of muscle mitochondria in perciform fishes. J Exp Biol 201:1–12

    CAS  PubMed  Google Scholar 

  • Kamler E (2002) Inter-individual and seasonal variability of biological indices in notothenioid fishes from Admiralty Bay. Antarctica Pol Polar Res 23:265–278

    Google Scholar 

  • Kawall HG, Torres JJ, Siddell BD, Somero GN (2002) Metabolic cold adaptation in Antarctic fishes: evidence from enzymatic activities of brain. Mar Biol 140:279–286

    Article  Google Scholar 

  • Keen JH, Habig WH, Jakoby WB (1976) Mechanism for several activities of the glutathione S transferases. J Biol Chem 251:6183–6188

    CAS  PubMed  Google Scholar 

  • Klein RD, Borges VD, Rosa CE et al (2017a) Effects of increasing temperature on antioxidant defense system and oxidative stress parameters in the Antarctic fish Notothenia coriiceps and Notothenia rossii. J Therm Biol 68:110–118. https://doi.org/10.1016/j.jtherbio.2017.02.016

    Article  CAS  PubMed  Google Scholar 

  • Klein RD, Rosa CE, Colares EP et al (2017b) Antioxidant defense system and oxidative status in Antarctic fishes: the sluggish rockcod Notothenia coriiceps versus the active marbled notothen Notothenia rossii. J Therm Biol 68:119–127. https://doi.org/10.1016/j.jtherbio.2017.02.013

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Sahu NP, Pal AK, Choudhury D, Yengkokpam S, Mukherjee SC (2005) Effect of dietary carbohydrate on haematology, respiratory burst activity and histological changes in L. rohita juveniles. Fish Shellfish Immun 19:331–344

    Article  CAS  Google Scholar 

  • Kumar P, Pal AK, Sahu NP, Jha AK, Priya P (2015) Biochemical and physiological stress responses to heat shock and their recovery in Labeo rohita fingerlings. Proc Natl Acad Sci, India, Sect B Biol Sci 85:485–490

    Article  Google Scholar 

  • Lannig G, Storch D, Pörtner HO (2005) Aerobic mitochondrial capacities in Antarctic and temperate eelpout (Zoarcidae) subjected to warm versus cold acclimation. Polar Biol 28:575–584. https://doi.org/10.1007/s00300-005-0730-9

    Article  Google Scholar 

  • Li AJ, Leung PTY, Bao VWW, Lui GCS, Leung KMY (2015) Temperature-dependent physiological and biochemical responses of the marine medaka Orzias melastigma with consideration of both low and high thermal extremes. J Therm Biol 54:98–105

    Article  CAS  PubMed  Google Scholar 

  • Lim C, Klesius PH (2003) Influence of dietary levels of magnesium on growth, tissue mineral content, and resistance of channel catfish Ictalurus punctatus challenged with Edwardsiellu ictaluri. J World Aquacult Soc 34:18–28

    Article  Google Scholar 

  • Lima-Junior SE, Goitein R (2006) Fator de condição e ciclo gonadal de fêmeas de Pimelodus maculatus (Osteichthyes, Pimelodidae) no rio Piracicaba (SP, Brasil). Bol Inst Pesca 32:87–94

    Google Scholar 

  • Linkowski TB, Żukowski C (1980) Observation on the growth of Notothenia coriiceps neglecta Nybelin and Notothenia rossii marmorata Fischer in Admiralty Bay (King George Island South Shetland Islands). Pol Polar Res 1:155–162

    Google Scholar 

  • Lloret J (2002) Effects of large-scale habitat variability on condition of demersal exploited fish in the north-western Mediterranean. ICES J Mar Sci 59:1215–1227. https://doi.org/10.1006/jmsc.2002.1294

    Article  Google Scholar 

  • Londraville RL, Sidell BD (1990) Ultrastructure of aerobic muscle in antarctic fishes may contribute to maintenance of diffusive fluxes. J Exp Biol 150:205–220

    Google Scholar 

  • Lowe CJ, Davison W (2005) Plasma osmolarity, glucose concentration and erythrocyte responses of two Antarctic nototheniid fishes to acute and chronic thermal change. J Fish Biol 67:752–766. https://doi.org/10.1111/j.0022-1112.2005.00775.x

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:267–275

    Google Scholar 

  • Lushchak VI, Bagnyukova TV (2006a) Temperature increase results in oxidative stress in goldfish tissues. 2. Antioxidant and associated enzymes. Comp Biochem Physiol - C Toxicol Pharmacol 143:36–41. https://doi.org/10.1016/j.cbpc.2005.11.018

    Article  CAS  PubMed  Google Scholar 

  • Lushchak VI, Bagnyukova TV (2006b) Temperature increase results in oxidative stress in goldfish tissues. 1. Indices of oxidative stress. Comp Biochem Physiol - C Toxicol Pharmacol 143:30–35. https://doi.org/10.1016/j.cbpc.2005.11.017

    Article  CAS  PubMed  Google Scholar 

  • Lushchak VI, Bagnyukova TV, Lushchak OV, Storey JM, Storey KB (2005) Hypoxia and recovery perturb free radical processes and antioxidant potential in common carp (Cyprinus carpio) tissues. Int J Biochem Cell Biol 37:1319–1330

    Article  CAS  PubMed  Google Scholar 

  • Machado C, Zaleski T, Rodrigues E et al (2014) Effect of temperature acclimation on the liver antioxidant defence system of the Antarctic nototheniids Notothenia coriiceps and Notothenia rossii. Comp Biochem Physiol Part - B Biochem Mol Biol 172–173:21–28. https://doi.org/10.1016/j.cbpb.2014.02.003

    Article  CAS  Google Scholar 

  • Mark FC, Lucassen M, Strobel A et al (2012) Mitochondrial function in antarctic nototheniids with ND6 translocation. PLoS One 7. https://doi.org/10.1371/journal.pone.0031860

  • Martins CIM, Schrama JW, Verreth JAJ (2006) The relationship between individual differences in feed efficiency and stress response in African catfish Clarias gariepinus. Aquaculture 256:588–595

    Article  Google Scholar 

  • Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32:1–5. https://doi.org/10.1029/2005GL024042

    Article  Google Scholar 

  • Metcalf VJ, Gemmell NJ (2005) Fatty acid transport in cartilaginous fish: absence of albumin and possible utilization of lipoproteins. Fish Physiol Biochem 31:55–64

    Article  CAS  Google Scholar 

  • Mintenbeck K, Barrera-Oro ER, Brey T, Jacob U, Knust R, Mark FC, Moreira E, Strobel A, Arntz WE (2012) Impact of climate change on fishes in complex Antarctic ecosystems. Adv Ecol Res 46:351–426

    Article  Google Scholar 

  • Mueller IA, Grim JM, Beers JM, Crockett EL, O’Brien KM (2011) Inter-relationship between mitochondrial function and susceptibility to oxidative stress in red- and white-blooded Antarctic notothenioid fishes. J Exp Biol 214:3732–3741

    Article  CAS  PubMed  Google Scholar 

  • Mueller IA, Devor DP, Grim JM, Beers JM, Crockett EL, O’Brien KM (2012) Exposure to critical thermal maxima increases oxidative stress in hearts of white but not red-blooded Antarctic notothenioid fishes. J Exp Biol 215:3655–3664

    Article  CAS  PubMed  Google Scholar 

  • Mueller I, Hoffman M, Dullen K, O’Brien K (2014) Moderate elevations in temperature do not increase oxidative stress in oxidative muscles of Antarctic notothenioid fishes. Polar Biol 37:311–320

    Article  Google Scholar 

  • Nazifi S, Saeb M, Rowghani E, Kaveh K (2003) The influence of thermal stress on serum biochemical parameters of Iranian fat-tailed sheep and their correlation with triiodothyronine (T3), thyroxine (T4) and cortisol concentrations. Comp Clin Pathol 12:135–139

    Article  CAS  Google Scholar 

  • Nelson DL, COX MM (2002) Lehninger Princípios de Bioquímica. 3ª Edição. Sarvier, São Paulo

    Google Scholar 

  • Peck LS (2002) Ecophysiology of Antarctic marine ectotherms: limits to life. Polar Biol 25:31–40

    Article  Google Scholar 

  • Pedro JB, Martin T, Steig EJ et al (2016) Southern Ocean deep convection as a driver of Antarctic warming events. Geophys Res Lett 43:2192–2199. https://doi.org/10.1002/2016GL067861

    Article  Google Scholar 

  • Peres H, Costas B, Perez-Jimenez A, Guerreiro I, Oliva-Teles A (2015) Reference values for selected hematological and serum biochemical parameters of Senegalese sole (Solea senegalensis Kaup, 1858) juveniles under intensive aquaculture conditions. J Appl Ichthyol 31:65–71

    Article  CAS  Google Scholar 

  • Podrabsky JE, Somero GN (2006) Inducible heat tolerance in Antarctic notothenioid fishes. Polar Biol 30:39–43. https://doi.org/10.1007/s00300-006-0157-y

    Article  Google Scholar 

  • Pörtner HO (2002) Climate change and temperature dependent biogeography: systemic to molecular hierarchies of thermal tolerance in animals. Comp Biochem Physiol A 132:739–761

    Article  Google Scholar 

  • Pörtner HO (2006) Climate-dependent evolution of Antarctic ectotherms: an integrative analysis. Deep Res Part II Top Stud Oceanogr 53:1071–1104. https://doi.org/10.1016/j.dsr2.2006.02.015

    Article  Google Scholar 

  • Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692

    Article  PubMed  Google Scholar 

  • Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97

    Article  CAS  PubMed  Google Scholar 

  • Pörtner HO, Lucassen M, Storch D (2005) Metabolic biochemistry: its role in thermal tolerance and in the capacities of physiological and ecological function. In: Farrell A.P., J. F. Steffensen (Eds.), The physiology of polar fishes. Fish physiology (Randall, D.R., Farrell, A.P., Eds.), 22: 79-154.

  • di Prisco G (1998). Molecular adaptations in Antarctic fish hemoglobins. In: di Prisco G, Pisano E, Clarke A. Eds. Fishes of Antarctica. A Biological Overview. Springer, Milano, pp. 339–353.

  • Raga G, Pichler HA, Zaleski T et al (2015) Ecological and physiological aspects of the antarctic fishes Notothenia rossii and Notothenia coriiceps in Admiralty Bay, Antarctic Peninsula. Environ Biol Fish 98:775–788. https://doi.org/10.1007/s10641-014-0311-2

    Article  Google Scholar 

  • Regoli F, Principato GB, Bertoli E, Nigro M, Orlando E (1997) Biochemical characterization of the antioxidant system in the scallop Adamussium colbecki, a sentinel organism for monitoring the Antarctic environment. Polar Biol 17:251–258

    Article  Google Scholar 

  • Regoli F, Nigro M, Benedetti M, Fattorini D, Gorbi S (2005) Antioxidant efficiency in early life stages of the Antarctic silverfish, Pleuragramma antarcticum: responsiveness to pro-oxidant conditions of platelet ice and chemical exposure. Aquat Toxicol 75:43–52

    Article  CAS  PubMed  Google Scholar 

  • Rhee SG, Yang KS, Kang SW, Woo HA, Chang TS (2005) Controlled elimination of intracelular H2O2: regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Antioxid Redox Signal 7:619–626

    Article  CAS  PubMed  Google Scholar 

  • Robinson E, Davison W (2008) The Antarctic notothenioid fish Pagothenia borchgrevinki is thermally flexible: acclimation changes oxygen consumption. Polar Biol 31:317–326. https://doi.org/10.1007/s00300-007-0361-4

    Article  Google Scholar 

  • Rodrigues E, Suda CNK, Rodrigues E et al (2011) Respostas Metabólicas de peixes Antárticos como marcadores de impacto ambiental. Oecologia Aust 15:124–149. https://doi.org/10.4257/oeco.2011.1501.10

    Article  Google Scholar 

  • Rodrigues E, Feijó-Oliveira M, Vani GS et al (2013) Interaction of warm acclimation, low salinity, and trophic fluoride on plasmatic constituents of the Antarctic fish Notothenia rossii Richardson, 1844. Fish Physiol Biochem 39:1591–1601. https://doi.org/10.1007/s10695-013-9811-9

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues E, Feijó-Oliveira M, Suda CNK et al (2015) Metabolic responses of the Antarctic fishes Notothenia rossii and Notothenia coriiceps to sewage pollution. Fish Physiol Biochem 41:1205–1220. https://doi.org/10.1007/s10695-015-0080-7

    Article  CAS  PubMed  Google Scholar 

  • Saborowski IR, Buchholz F (2002) Metabolic properties of Northern krill, Meganyctiphanes norvegica, from different climatic zones. II. Enzyme characteristics and activities. Mar Biol 140:557–565

    Article  CAS  Google Scholar 

  • Sandersfeld T, Davison W, Lamare MD, Knust R, Richter C (2015) Elevated temperature causes metabolic trade-offs at the whole-organism level in the Antarctic fish Trematomus bernacchii. J Exp Biol 218:2373–2381

  • Schales O, Schales SJ (1941) A simple and accurate method for the determination of chloride in biological fluids. J Biol Chem 140:879–884

    CAS  Google Scholar 

  • Schreck CB (1981) Stress and compensation in teleostean fishes: response to social and physical factors. In: Pickering AD (ed) Stress and fish. Academic Press, London, pp 295–321

    Google Scholar 

  • Seebacher F, Davison W, Lowe CJ, Franklin CE (2005) A falsification of the thermal specialization paradigm: compensation for elevated temperatures in Antarctic fishes. Biol Lett 1:151–154. https://doi.org/10.1098/rsbl.2004.0280

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharpe RL, Drolet M, MacLatchy DL (2006) Investigation of de novo cholesterol synthetic capacity in the gonads of goldfish (Carassius auratus) exposed to the phytosterol beta-sitosterol. Reprod Biol Endocrinol 4:60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi X, Zhuang P, Zhang L, Chen L, Xu B, Feng G, Huang X (2010) Optimal starvation time before blood sampling to get baseline data on several blood biochemical parameters in Amur sturgeon, Acipenser schrenckii. Aquac Nutr 16:544–548

    Article  CAS  Google Scholar 

  • Sokolova IM, Frederich M, Bagwe R, Lannig G, Sukhotin A (2012) Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar Environ Res 79:1–15

    Article  CAS  PubMed  Google Scholar 

  • Somero GN, De Vries AL (1967) Temperature tolerance of some antarctic fishes. Science 156:257

    Article  CAS  PubMed  Google Scholar 

  • Souza MRDP, Herrerias T, Zaleski T, Forgati M, Kandalski PK, Machado C, Silva DT, Piechnik CA, Moura MO, Donatti L (2018) Heat stress in the heart and muscle of the Antarctic fishes Notothenia rossii and Notothenia coriiceps: carbohydrate metabolism and antioxidant defence. Biochimie 146:43–55. https://doi.org/10.1016/j.biochi.2017.11.010

    Article  CAS  PubMed  Google Scholar 

  • Strobel A, Bennecke S, Leo E et al (2012) Metabolic shifts in the Antarctic fish Notothenia rossii in response to rising temperature and PCO2. Front Zool 9:28. https://doi.org/10.1186/1742-9994-9-28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel A, Graeve M, Pörtner HO, Mark FC (2013a) Mitochondrial acclimation capacities to ocean warming and acidification are limited in the Antarctic nototheniid fish, Notothenia rossii and Lepidonotothen squamifrons. PLoS One 8(7):e68865. https://doi.org/10.1371/journal.pone.0068865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel A, Leo E, Pörtner HO, Mark FC (2013b) Elevated temperature and PCO2 shift metabolic pathways in differentially oxidative tissues of Notothenia rossii. Comp Biochem Physiol B 166:48–57

    Article  CAS  PubMed  Google Scholar 

  • Thorne MAS, Bruns G, Fraser KPP, Hillyard G, Clark MS (2010) Transcription profiling of acute temperature stress in the Antarctic plunderfish Harpagifer antarcticus. Mar Genomics 3:35–44

    Article  CAS  PubMed  Google Scholar 

  • Thuesen EV, McCullough KD, Childress JJ (2005) Metabolic enzyme activities in swimming muscle of medusae: is the scaling of glycolytic activity related to oxygen availability? J Mar Biol Assoc U K 85:603–611

    Article  CAS  Google Scholar 

  • Trinder P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6:24–25

    Article  CAS  Google Scholar 

  • Tseng YC, Hwang PP (2008) Some insights into energy metabolism for osmoregulation in fish. Comp Biochem Physiol C 148:419–429

    Google Scholar 

  • Turner J, Barrand NE, Bracegirdle TJ et al (2014) Antarctic climate change and the environment: an update. Polar Rec (Gr Brit) 50:237–259. https://doi.org/10.1017/S0032247413000296

    Article  Google Scholar 

  • Van de Nieuwegiessen PG, Boerlage AS, Verreth JAJ, Schrama JW (2008) Assessing the effects of a chronic stressor, stocking density, on welfare indicators of juvenile African catfish, Clarias gariepinus Burchell. Appl Anim Behav Sci 115:233–243

    Article  Google Scholar 

  • Vanella FA, Boy CC, Lattuca ME, Calvo J (2010) Temperature influence on post-prandial metabolic rate of sub- antartic teleost fish. Comp Biochem Physiol A 156:247–254

    Article  CAS  Google Scholar 

  • Vazzoler AEAM (1996) Biologia da reprodução de peixes teleósteos: teoria e prática. Universidade Estadual de Maringá, Editora.

  • Verde C, Parisi E, di Prisco G (2006) The evolution of thermal adaptation in polar fish. Gene 385:137–145. https://doi.org/10.1016/j.gene.2006.04.006

    Article  CAS  PubMed  Google Scholar 

  • Vijayan MM, Reddy PK, Leatherland JF, Moon TW (1994) The effects of cortisol on hepatocyte metabolism in rainbow trout: a study using the steroid analogue RU486. Gen Comp Endocrinol 96:75–84

    Article  CAS  PubMed  Google Scholar 

  • Whittamore JM (2012) Osmoregulation and epithelial water transport: lessons from the intestine of marine teleost fish. J Comp Physiol B 182:1–39

    Article  PubMed  Google Scholar 

  • Whittamore JM, Cooper CA, Wilson RW (2010) HCO3 - secretion and CaCO3 precipitation play major roles in intestinal water absorption in marine teleost fish in vivo. Am J Phys Regul Integr Comp Phys 298:877–886

    Google Scholar 

  • Windisch HS, Kathöver R, Pörtner HO, Frickenhaus S, Lucassen M (2011) Thermal acclimation in Antarctic fish: transcriptomic profiling of metabolic pathways. Am J Phys Regul Integr Comp Phys 301:1453–1466

    Google Scholar 

  • Windisch HS, Frickenhaus S, John U et al (2014) Stress response or beneficial temperature acclimation: transcriptomic signatures in Antarctic fish (Pachycara brachycephalum). Mol Ecol 23:3469–3482. https://doi.org/10.1111/mec.12822

Download references

Acknowledgments

We thank Professor Tatiana Herrerias for her helpful suggestions to improve the manuscript. We are grateful to the following organizations for their support: the Brazilian Ministry of Environment (MMA), the Ministry of Science, Technology and Innovation (MCTI), the National Council for the Development of Scientific and Technological Research (CNPq), the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES), and the Secretariat of the Commission for the Resources of the Sea (SeCIRM). The authors would like to extend special acknowledgments to Dr. Edith Susana Elisabeth Fanta (in memoriam), coordinator of the project Evolution and Biodiversity in Antarctica: the response of life to changes (Evolução e Biodiversidade na Antártica: A resposta da vida às mudanças-EBA) and to Dr. Yocie Yoneshigue Valentin, coordinator of the National Institute for Science and Technology-Antarctic Environmental Research (Instituto Nacional de Ciência Antártica e Tecnologia Antártico de Pesquisas Ambientais-INCT-APA), for the help and support provided during the present study.

Funding

The study was funded by CAPES, CNPq, and FAPERJ through projects PNPD (CAPES process Auxpe N. 2443/2011), EBA (MCTI/CNPq Process N. 52.0125/2008-8, International Polar Year), research productivity granted to L. Donatti (CNPq Process N. 305562/2009-6 and 305969/2012-9), and INCT-APA (CNPq Process N. 574018/2008-5 and FAPERJ E-26/170.023/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucélia Donatti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving in animal rights

All work on fishes was performed according to the ethical guidelines of Brazilian law. The Brazilian Ministry of Environment (MMA) awarded the appropriate environmental licenses, and this study was approved by the Ethics Committee on Animal Experimentation of the Federal University of Paraná (CEUA-UFPR) under number 496.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandalski, P.K., Zaleski, T., Forgati, M. et al. Effect of long-term thermal challenge on the Antarctic notothenioid Notothenia rossii. Fish Physiol Biochem 45, 1445–1461 (2019). https://doi.org/10.1007/s10695-019-00660-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-019-00660-3

Keywords

Navigation