Skip to main content

Advertisement

Log in

Temperature-dependent energy allocation to growth in Antarctic and boreal eelpout (Zoarcidae)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Antarctic fishes display slower annual growth rates than congeneric species from temperate zones. For an analysis of growth in relation to energy turnover, body composition was analysed in two benthic fish species to establish a whole animal energy budget. The Antarctic eelpout, Pachycara brachycephalum, was maintained at 0, 2, 4 and 6°C and the boreal eelpout, Zoarces viviparus at 4, 6, 12 and 18°C. At maximum food supply the weight gain was highest for P. brachycephalum at 4°C. Routine metabolic rate in acclimated Antarctic eelpouts did not differ between temperatures, whereas in Z. viviparus maximized growth benefited from a reduction of metabolic energy demands at 12°C. The lipid content of liver declined with increasing temperature in both species. The thermal window for growth is based on food conversion efficiency and the level of metabolic energy demand and is limited according to the level of aerobic scope available between pejus temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen NG (2001) A gastric evacuation model for three predatory gadoids and implications of using pooled field data of stomach contents to estimate food rations. J Fish Biol 59(5):1198–1217

    Article  Google Scholar 

  • Anderson ME (1984) Zoarcidae: development and relationship. Special publications. Am Soc Ichthyol Herpetol 17:578–582

    Google Scholar 

  • Arntz WE, Brey T, Gallardo VA (1994) Antarctic marine zoobenthos. Oceanogr Mar Biol Annu Rev 32:241–304

    Google Scholar 

  • Arntz WE, Gutt J, Klages M (1997) Antarctic marine biodiversity: an overview. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities. Species, structure and survival. Cambridge University Press, Cambridge, pp 3–14

    Google Scholar 

  • Ayala MD, Lopez-Albors O, Gil F, Garcia-Alcazar A, Abellan E, Alarcon JA, Alvarez MC, Ramirez-Zarzosa G, Moreno F (2001) Temperature effects on muscle growth in two populations (Atlantic and Mediterranean) of sea bass, Dicentrarchus labrax L. Aquaculture 202(3–4):359–370

    Article  Google Scholar 

  • Billerbeck JM, Schultz ET, Conover DO (2000) Adaptive variation in energy acquisition and allocation among latitudinal populations of the Atlantic silverside. Oecologia 122(2):210–219

    Article  Google Scholar 

  • Björnsson B, Steinarsson A (2002) The food-unlimited growth rate of Atlantic cod (Gadus morhua). Can J Fish Aquat Sci/J Can Sci Halieut Aquat 59(3):494–502

    Article  Google Scholar 

  • Brett JR, Groves TD (1979) Physiological energetics. Fish Physiol 8:279–352

    Article  CAS  Google Scholar 

  • Brockington S (2001) The seasonal energetics of the Antarctic bivalve Laternula elliptica (King and Broderip) at Rothera point, Adelaide Island. Polar Biol 24:523–530

    Article  Google Scholar 

  • Brodte E (2001) Wachstum und Fruchtbarkeit der Aalmutterarten Zoarces viviparus (Linne) und Pachycara brachycephalum (Pappenheim) aus unterschiedlichen klimatischen Regionen. Diploma thesis im Fach Biologie, Universität Bremen, Fachbereich 2

  • Brodte E, Knust R, Pörtner HO, Arntz WE (2006) Biology of the Antarctic eelpout Pachycara brachycephalum. Deep Sea Res II (in press)

  • Brodte E, Knust R, Ulleweit J, Fonds M, Arntz WE Zoarces viviparus–aspects of growth in latitudinal and temporal scale. In preparation

  • Brown CR, Cameron JN (1991) The relationship between specific dynamic action (SDA) and protein synthesis rates in the channel catfish. Physiol Zool 64(1):298–309

    CAS  Google Scholar 

  • Burchett MS (1983) Age and growth of the Antarctic fish Notothenia rossii from South Georgia. Bull Br Antarct Surv 60:45–61

    Google Scholar 

  • Cavalli L, Chappaz R, Bouchard P, Brun G (1997) Food availability and growth of the brook trout, Salvelinus fontinalis (Mitchill), in a French Alpine lake. Fish Manage Ecol 4(3):167–177

    Article  Google Scholar 

  • Clarke A (1980) A reappraisal of the concept of metabolic cold adaptation in polar marine invertebrates. Biol J Linn Soc 4(1):77–92

    Google Scholar 

  • Clarke A (1983) Life in cold water: the physiological ecology of polar marine ectotherms. Oceanogr Mar Biol Annu Rev 21:341–453

    Google Scholar 

  • Clarke A, Fraser KPP (2004) Why does metabolism scale with temperature? Funct Ecol 18:234–237

    Google Scholar 

  • Clarke A, Johnston NM (1999) Scaling of metabolic rate with body mass and temperature in teleost fish. J Anim Ecol 68:893–905

    Article  Google Scholar 

  • Clarke A, North AW (1991) Is growth of polar fish limited by temperature? In: Di Prisco G, Maresca B, Tota B (eds) Biology of Antarctic fish. Springer, Berlin Heidelberg New York, pp 54–69

    Google Scholar 

  • Coggan R (1997a) Growth: ration relationships in the Antarctic fish Notothenia coriiceps, Richardson, maintained under different conditions of temperature and photoperiod. J Exp Mar Biol Ecol 210(1):23–35

    Article  Google Scholar 

  • Coggan R (1997b) Seasonal and annual growth rates in the Antarctic fish Notothenia coriiceps Richardson. J Exp Mar Biol Ecol 213(2):215–229

    Article  Google Scholar 

  • Colella A, Patamia M, Galtieri A, Giardina B (2000) Cold adaptation and oxidative metabolism of Antarctic fish. Ital J Zool 67(Suppl 1):33–36

    Article  CAS  Google Scholar 

  • Conover DO, Brown JJ, Ehtisham A (1997) Countergradient variation in growth of young striped bass (Morone saxatilis) from different latitudes. Can J Fish Aquat Sci/J Can Sci Halieut Aquat 54(10):2401–2409

    Article  Google Scholar 

  • Crockett EL, Sidell BD (1990) Some pathways of energy metabolism are cold adapted in Antarctic fishes. Physiol Zool 63(3):472–488

    Google Scholar 

  • Cui Y, Liu J (1990) Comparison of energy budget among six teleosts–2. Metabolic rates. Comp Biochem Physiol A 97(2):169–174

    Article  Google Scholar 

  • Cui Y, Wootton RJ (1990) Components of the energy budget in the European minnow, Phoxinus phoxinus (L.) in relation to ration, body weight and temperature. Acta hydrobiologica sinica/Shuisheng Shengwu Xuebao. Wuhan 14(3):193–204

    Google Scholar 

  • von Dorrien CF (1993) Ecology and respiration of selected Arctic benthic fish species. Berichte zur Polarforschung/Reports on Polar Research 125, 104pp

  • Elliott JM (1976) Energy losses in the waste products of brown trout (Salmo trutta L.). J Anim Ecol 45:561–580

    Article  Google Scholar 

  • Elliot JM, Davidson W (1975) Energy equivalents of oxygen consumption in animal energetics. Oecologia 19:195–201

    Article  Google Scholar 

  • Everson I (1977) The living resources of the Southern Ocean. FAO Southern Ocean Fisheries Survey Program, Rome, GLO/SO/77/1 156pp

  • Fischer T (2003) The effects of climate induced temperature changes on cod (Gadus morhua L.): linking ecological and physiological investigations. Berichte zur Polar- und Meeresforschung 453

  • Fonds M, Jaworski A, Iedema A, Puyl PVD (1989a) Metabolism, food consumption, growth and food conversion of shorthorn sculpin (Myoxocephalus scorpius) and eelpout (Zoarces viviparus). ICES Council Meeting 1989 (collected papers), ICES, Copenhagen (Denmark), G:31, 19pp

  • Fonds M, Drinkwaard B, Resink JW, Eysink GGJ, Toet W (1989b) Measurements of metabolism, food intake and growth of Solea solea (L.) fed with mussel meat or dry food. In: DePauw N, Jaspers E, Achefors H, Wilkins N (eds) Aquaculture—a biotechnology in progress. European Aquaculture Society, Bredene

  • Fonds M, Cronie R, Vethaak AD, van der Puyl P (1992) Metabolism, food consumption and growth of plaice (Pleuronectes platessa) and flounder (Platichthys flesus) in relation to fish size and temperature. Neth J Sea Res 29(1–3):127–143

    Article  Google Scholar 

  • Frederich M, Pörtner HO (2000) Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in spider crab, Maja squinado. Am J Physiol Regul Integr Comp Physiol 279:R1531–R1538

    PubMed  CAS  Google Scholar 

  • Giardina B, Mordente A, Zappacosta B, Calla C, Colacicco L, Gozzo ML, Lippa S (1998) The oxidative metabolism of Antarctic fish: some peculiar aspects of cold adaptation. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica, Springer, Milano

  • Gnaiger E, Bitterlich G (1984) Proximate biochemical composition and caloric content calculated from elemental CHN analysis: a stoichiometric concept. Oecologia 62:289–298

    Article  Google Scholar 

  • Hansen TK, Falk-Petersen IB (2001) The influence of rearing temperature on early development and growth of spotted wolffish Anarhichas minor (Olafsen). Aquacult Res 32(5):369–378

    Article  Google Scholar 

  • Hardewig I, van Dijk PLM, Pörtner HO (1998) High-energy turnover at low temperatures: recovery from exhaustive exercise in Antarctic and temperate eelpouts. Am J Physiol 43:R1789–R1796

    Google Scholar 

  • Hardewig I, van Dijk PLM, Moyes CD, Pörtner HO (1999) Temperature-dependent expression of cytochrome-C oxidase in Antarctic and temperate fish. Am J Physiol 277:R508–R516

    PubMed  CAS  Google Scholar 

  • Hochachka PW (1988) Channels and pumps-determinants of metabolic cold adaptation strategies. Comp Biochem Physiol B 90B(3):515–519

    Article  CAS  Google Scholar 

  • Hofmann N, Fischer P (2003) Impact of temperature on food intake and growth in juvenile burbot. J Fish Biol 63(5):1295–1305

    Article  Google Scholar 

  • Holeton GF (1974) Metabolic cold adaptation of polar fish: fact or artefact. Physiol Zool 47(3):137–152

    Google Scholar 

  • Houde ED (1989) Comparative growth, mortality, and energetics of marine fish larvae: temperature and implied latitudinal effects. Fish Bull 87(3):471–495

    Google Scholar 

  • Iedema A (1989) Metingen van groei, voedselopname en zuurstofconsumptie an de puitaal, Zoarces viviparus (Linne) ed. Stageverslag voor studie biologie aan de Rijkssuniversiteit Groningen

  • Jobling M (1986) Gastrointestinal overload – a problem with formulated feeds? Aquaculture 51:257–263

    Article  Google Scholar 

  • Jobling M (1987) Growth of Arctic charr (Salvelinus alpinus L.) under conidtion of constant light and temperature. Aquaculture 60:243–249

    Article  Google Scholar 

  • Jobling M (1994) Fish bioenergetics. Chapman & Hall, New York

  • Johnston IA, Battram J (1993) Feeding energetics and metabolism in demersal fish species from Antarctic, temperate and tropical environments. Mar Biol 115(1):7–14

    Article  Google Scholar 

  • Jonsson N, Jonsson B (1998) Body composition and energy allocation in life-history stages of brown trout. J Fish Biol 53:1306–1316

    Article  Google Scholar 

  • Kawall HG, Somero GN (1996) Temperature compensation of enzymatic activities in brain of Antarctic fishes: evidence for metabolic cold adaptation. Antarctic J US 31(2):115–117

    Google Scholar 

  • Kooijman SALM (2000) Dynamic energy and mass budgets in biological systems. University Press, Cambridge

    Google Scholar 

  • Koskela J, Pirhonen J, Jobling M (1997) Effect of low temperature on feed intake, growth rate and body composition of juvenile Baltic salmon. Aquacult Int 5(6):479–488

    Article  Google Scholar 

  • La Mesa M, Vacchi M (2001) Age and growth of high Antarctic notothenioid fish. Antarctic Sci 13(3):227–235

    Article  Google Scholar 

  • Lannig G, Storch D, Pörtner HO (2005) Aerobic mitochondrial capacities in Antarctic and temperate eelpout (Zoarcidae) subjected to warm versus cold acclimation. Polar Biol 28:575–584

    Article  Google Scholar 

  • Lyytikaeinen T, Koskela J, Rissanen I (1997) The influence of temperature on growth and proximate body composition of under yearling Lake Inari arctic char (Salvelinus alpinus) (L.)). J Appl Ichthyol/Z Angew Ichthyol 13(4):191–194

    Google Scholar 

  • Mark FC, Bock C, Pörtner HO (2002) Oxygen limited thermal tolerance in Antarctic fish investigated by magnetic resonance imaging (MRI) and spectroscopy (31P-MRS). Am J Physiol Regul Integr Comp Physiol 283:R1254–R1262

    PubMed  CAS  Google Scholar 

  • Mark FC, Hirse T, Pörtner H-O (2005) Thermal sensitivity of cellular energy budgets in Antarctic fish hepatocytes. Polar Biol 28:805–814

    Article  Google Scholar 

  • Morales-Nin B, Moranta J, Balguerias E (2000) Growth and age validation in high-Antarctic fish. Polar Biol 23:626–634

    Article  Google Scholar 

  • Nicieza AG, Reyes-Gavilan FG, Brana F (1994) Differentiation in juvenile growth and bimodality patterns between northern and southern populations of Atlantic salmon (Salmo salar L.). Can J Zool/Revue Can Zool 72(9):1603–1610

    Article  Google Scholar 

  • North AW (1998) Growth of young fish during winter and summer at South Georgia. Polar Biol 19:198–205

    Article  Google Scholar 

  • Otterlei E, Folkvord A, Nyhammer G (2000) Temperature dependent otolith growth of larval and early juvenile Atlantic cod (Gadus morhua). Temperature- and Size-Dependent growth of larval and early Juvenile Atlantic Cod (Gadus morhua L.). Department of Fisheries and Marine Biology, University of Bergen

  • Pauly D (1979) Gill size and temperature as governing factors in fish growth: a generalization of von Bertalanffy’s growth formula. Ber Inst Meereskd Christian-Albrecht-Univ Kiel 63:156p

  • Peck LS (2002) Ecophysiology of Antarctic marine ectotherms: limits to life. Polar Biol 25:31–40

    Article  Google Scholar 

  • Peck L, Conway LZ (2000) The myth of metabolic cold adaptation: oxygen consumption in stenothermal Antarctic bivalves. In: Harper EM, Taylor JD, Crame JA (eds) The evolutionary biology of the Bivalvia, vol 177. Geological Society, Special Publications, London, pp 441–450

  • Pitcher TJ, Hart PJB (1982) Fisheries ecology. Croom Helm, London & Canberra

    Google Scholar 

  • Pörtner HO (2002) Physiological basis of temperature-dependent biogeography: trade-offs in muscle design and performance in polar ectotherms. J Exp Biol 205(15):2217–2230

    PubMed  Google Scholar 

  • Pörtner HO, Hardewig I, Sartoris FJ, van Dijk PLM (1998) Acid-based balance, ion regulation and energetics in the cold. In: Pörtner HO, Playle RC (eds) Cold ocean physiology, University Press, Cambridge

  • Pörtner HO, Berdal B, Blust R, Brix O, Colosimo A, de Wachter B, Giuliani A, Johansen T, Fischer T, Knust R, Lannig G, Naevdal G, Nedenes A, Nyhammer G, Sartoris FJ, Serendero I, Sirabella P, Thorkildsen S, Zakhartsev M (2001) Climate induced temperature effects on growth performance, fecundity and recruitment in marine fish: developing a hypothesis for cause and effect relationships in Atlantic cod (Gadus morhua) and common eelpout (Zoarces viviparus). Cont Shelf Res 21:1975–1997

    Article  Google Scholar 

  • Pörtner HO, Lucassen M, Storch D (2005) Metabolic biochemistry, an integrative view. In: Steffensen JF, Farrell AP (eds) The Physiology of Polar Fishes, vol 22. Fish Physiology, Academic, Oxford

  • Purchase CF, Brown JA (2000) Interpopulation differences in growth rates and food conversion efficiencies of young Grand Banks and Gulf of Maine Atlantic cod (Gadus morhua). Can J Fish Aquat Sci/J Can Sci Halieut Aquat 57(11):2223–2229

    Article  Google Scholar 

  • Radtke RL, Hourigan TF (1990) Age and growth of the Antarctic fish Nototheniops nudifrons. Fish Bull 88(3):557–571

    Google Scholar 

  • Radtke RL, Targett TE, Kellermann A, Bell J, Hill KT (1989) Antarctic fish growth: profile of Trematomus newnesi. Mar Ecol Prog Ser 57(2):103–117

    Google Scholar 

  • Ricker WE (1975) Computations and interpretations of biological statistics of fish populations. Bull Res Board Can 191:1–382

    Google Scholar 

  • Rosas C, Martinez E, Gaxiola G, Brito R, Sanchez A, Soto LA (1999) The effect of dissolved oxygen and salinity on oxygen consumption, ammonia excretion and osmotic pressure of Penaeus setiferus (Linnaeus) juveniles. J Exp Mar Biol Ecol 234(1):41–57

    Article  Google Scholar 

  • Scofiani NM, Hawkins AD (1985) Field studies of energy budgets. In: Scofiani NM, Hawkins AD, Tytler P, Calow P (eds) Fish energetics: new perspectives, Croom Helm, London

  • Steffensen JF (2002) Metabolic cold adaptation of polar fish based on measurements of aerobic oxygen consumption: fact or artefact? Artefact! Comp Biochem Physiol A 132:789–795

    Article  Google Scholar 

  • Storch D, Lannig G, Pörtner H-O (2005) Temperature dependent protein synthesis capacities in stenothermal (Antarctic) and eurythermal (North Sea) fish (Zoarcidae). J Exp Biol 208:2409–2420

    Article  PubMed  CAS  Google Scholar 

  • Torres JJ, Somero GN (1988) Vertical distribution and metabolism in Antarctic mesopelagic fishes. Comp Biochem Physiol B 90B(3):521–528

    Article  CAS  Google Scholar 

  • Ulleweit J (1995) Zur Ökologie zweier Standfischarten, der Aalmutter (Zoarces viviparus, L.) und des Butterfisches (Pholis gunnellus, L.) aus dem Niedersächsischen Wattenmeer. Diploma thesis, Fachbereich 2, Biologie/Chemie, Universität Bremen

  • Van Dijk PLM, Tesch C, Hardewig I, Pörtner HO (1999) Physiological disturbances at critically high temperatures: a comparison between stenothermal Antarctic and eurythermal temperate eelpouts (Zoarcidae). J Exp Biol 202(24):3611–3621

    PubMed  Google Scholar 

  • Walker TR (2005) Vertical organic inputs and bio-availability of carbon in an Antarctic coastal sediment. Pol Polar Res 26:91–106

    Google Scholar 

  • Wieser W (1986) Bioenergetik. Georg Thieme Verlag, Stuttgart, New York

    Google Scholar 

  • Zakhartsev MV, de Wachter B, Sartoris FJ, Pörtner H-O, Blust R (2003) Thermal physiology of the common eelpout (Zoarces viviparus). J Comp Physiol B Biochem, Syst, Environ Physiol 173:365–378

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Mark Fonds for his helpful comments, especially concerning the former growth experiments with Z. viviparus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Brodte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brodte, E., Knust, R. & Pörtner, H.O. Temperature-dependent energy allocation to growth in Antarctic and boreal eelpout (Zoarcidae). Polar Biol 30, 95–107 (2006). https://doi.org/10.1007/s00300-006-0165-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-006-0165-y

Keywords

Navigation