Skip to main content
Log in

Effects of acclimation to high environmental temperatures on intermediary metabolism and osmoregulation in the sub-Antarctic notothenioid Eleginops maclovinus

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Eleginops maclovinus is a sub-Antarctic fish endemic to the South American coast and is a monotypic species of the Eleginopidae family. A scarce amount of scientific information exists regarding the effects of temperature on E. maclovinus physiology. In this study, E. maclovinus specimens were acclimated for 2 weeks at 10 °C (control), 14, and 18 °C. Posterior assessments were performed for the intermediary metabolism of carbohydrates, lipids, and amino acids (in the plasma, liver, gills, and kidney) and on the osmoregulatory capacity [plasma osmolality and gill, kidney, and foregut Na+, K+-ATPase (NKA) activities]. In the plasma, only lactate and total amino acid levels were affected by the temperature. NKA activity presented a linear relationship with the increased temperatures. The liver exhibited no change in the carbohydrates metabolism, but the glycogen/glucose metabolite levels did differ. Amino acid metabolism showed a direct relationship between temperature and GDH and Asp-AT activities, and an inverse relationship between temperature and Ala-AT activity. Lipid metabolism was similar to Ala-AT. In the gills, carbohydrate metabolism (G6PDH and HK activities) presented a direct relationship with the increased temperatures. In the kidney, carbohydrate metabolism (only G6PDH activity) was greater at higher temperatures, and amino acid metabolism (GDH activity) showed a direct relationship with temperature. Lipid metabolism (G3PDH activity) was greatest at 14 °C, presenting significant differences compared to 10 °C. The obtained results suggest that E. maclovinus can acclimate to the projected thermal increase of climate change, with a reorganization of the intermediary metabolism components being tissue-dependent and osmoregulatory effects being affected by NKA activity and greater rates of nitrogenous waste extrusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbink W, Garcia AB, Roques JAC, Partridge GJ, Kloet K, Schneider O (2012) The effect of temperature and pH on the growth and physiological response of juvenile yellowtail kingfish Seriola lalandi in recirculating aquaculture systems. Aquaculture 330:130–135

    Article  Google Scholar 

  • Arjona FJ, Ruiz-Jarabo I, Vargas-Chacoff L, del Rio MPM, Flik G, Mancera JM, Klaren PHM (2010) Acclimation of Solea senegalensis to different ambient temperatures: implications for thyroidal status and osmoregulation. Mar Biol 157:1325–1335

    Article  CAS  Google Scholar 

  • Ballantyne JS (2001) Amino acid metabolism. Fish Physiol Biochem 20:77–107

    Article  CAS  Google Scholar 

  • Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol 42:517–525

    Article  CAS  Google Scholar 

  • Beers JM, Sidell BD (2011) Thermal tolerance of antarctic notothenioid fishes correlates with level of circulating hemoglobin. Physiol Biochem Zool 84:353–362

    Article  CAS  Google Scholar 

  • Beyenbach KW (2000) Renal handling of magnesium in fish: from whole animal to brush border membrane vesicles. Front Biosci 5:D712–719

    CAS  Google Scholar 

  • Bozinovic F, Pörtner HO (2015) Physiological ecology meets climate change. Ecol Evol 5:1025–1030

    Article  Google Scholar 

  • Bystriansky JS, Ballantyne JS (2007) Gill Na+-K+-ATPase activity correlates with basolateral membrane lipid composition in seawater- but not freshwater-acclimated Arctic char (Salvelinus alpinus). Am J Physiol Regul Integr 292:R1043–R1051

    Article  CAS  Google Scholar 

  • Costas B, Aragao C, Ruiz-Jarabo I, Vargas-Chacoff L, Arjona FJ, Mancera JM, Dinis MT, Conceicao LEC (2012) Different environmental temperatures affect amino acid metabolism in the eurytherm teleost Senegalese sole (Solea senegalensis Kaup, 1858) as indicated by changes in plasma metabolites. Amino Acids 43:327–335

    Article  CAS  Google Scholar 

  • Driedzic WR, Ewart KV (2004) Control of glycerol production by rainbow smelt (Osmerus mordax) to provide freeze resistance and allow foraging at low winter temperatures. Comp Biochem Physiol B 139:347–357

    Article  Google Scholar 

  • Enzor LA, Hunter EM, Place SP (2017) The effects of elevated temperature and ocean acidification on the metabolic pathways of notothenioid fish. Conserv Physiol 5(1):19. https://doi.org/10.1093/conphys/cox019

    Article  Google Scholar 

  • Farrell AP, Stevens ED, Cech JJ, Richards JG (2011) Encyclopedia of fish physiology: from genome to environment. Academic Press, Elsevier, London, Waltham

    Google Scholar 

  • Feidantsis K, Pörtner HO, Antonopoulou E, Michaelidis B (2015) Synergistic effects of acute warming and low pH on cellular stress responses of the gilthead seabream Sparus aurata. J Comp Physiol B 185:185–205

    Article  CAS  Google Scholar 

  • Ficke AD, Myrick CA, Hansen LJ (2007) Potential impacts of global climate change on freshwater fisheries. Rev Fish Biol Fish 17:581–613

    Article  Google Scholar 

  • Freire CA, Amado EM, Souza LR, Veiga MP, Vitule JR, Souza MM, Prodocimo V (2008) Muscle water control in crustaceans and fishes as a function of habitat, osmoregulatory capacity, and degree of euryhalinity. Comp Biochem Physiol A 149:435–446

    Article  Google Scholar 

  • Goldspink G (1995) Adaptation of fish to different environmental-temperature by qualitative and quantitative changes in gene-expression. J Therm Biol 20:167–174

    Article  CAS  Google Scholar 

  • Gomez-Milan E, Cardenete G, Sanchez-Muros MJ (2007) Annual variations in the specific activity of fructose 1.6-bisphosphatase, alanine aminotransferase and pyruvate kinase in the Sparus aurata liver. Comp Biochem Physiol B 147:49–55

    Article  CAS  Google Scholar 

  • Gonzalez RJ (2012) The physiology of hyper-salinity tolerance in teleost fish: a review. J Comp Physiol B 182:321–329

    Article  CAS  Google Scholar 

  • Gonzalez-Cabrera PJ, Dowd F, Pedibhotla VK, Rosario R, Stanleysamuelson D, Petzel D (1995) Enhanced hypo-osmoregulation induced by warm-acclimation in Antarctic fish is mediated by increased gill and kidney Na+/K+-atpase activities. J Exp Biol 198:2279–2291

    CAS  Google Scholar 

  • Grosell M (2006) Intestinal anion exchange in marine fish osmoregulation. J Exp Biol 209(15):2813–2827

    Article  CAS  Google Scholar 

  • Hemre GI, Mommsen TP, Krogdahl A (2002) Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquacult Nutr 8:175–194

    Article  CAS  Google Scholar 

  • Hevroy EM, Hunskar C, de Gelder S, Shimizu M, Waagbo R, Breck O, Takle H, Sussort S, Hansen T (2013) GH-IGF system regulation of attenuated muscle growth and lipolysis in Atlantic salmon reared at elevated sea temperatures. J Comp Physiol B 183:243–259. https://doi.org/10.1007/s00360-012-0704-5

    Article  CAS  Google Scholar 

  • Hwang PP, Lee TH, Lin LY (2011) Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am J Physiol-Reg I 301:R28–R47

    CAS  Google Scholar 

  • Ibarz A, Beltran M, Fernandez-Borras J, Gallardo MA, Sanchez J, Blasco J (2007) Alterations in lipid metabolism and use of energy depots of gilthead sea bream (Sparus aurata) at low temperatures. Aquaculture 262:470–480

    Article  CAS  Google Scholar 

  • Imsland AK, Gunnarsson S, Foss A, Stefansson SO (2003) Gill Na+, K+-ATPase activity, plasma chloride and osmolality in juvenile turbot (Scophthalmus maximus) reared at different temperatures and salinities. Aquaculture 218:671–683

    Article  CAS  Google Scholar 

  • Ip YK, Loong AM, Kuah JS, Sim EWL, Chen XL, Wong WP, Lam SH, Delgado ILS, Wilson JM, Chew SF (2012) Roles of three branchial Na+-K+-ATPase alpha-subunit isoforms in freshwater adaptation, seawater acclimation, and active ammonia excretion in Anabas testudineus. Am J Physiol-Reg I 303:R112–R125

    CAS  Google Scholar 

  • IPCC (2014) Climate Change 2014: impacts, Adaptation and Vulnerability-Contributions of the Working Group II to the Fifth Assessment Report. Summ. Policy Mak

  • Johnston IA, Dunn J (1987) Temperature acclimation and metabolism in ectotherms with particular reference to teleost fish. Symp Soc Exp Biol 41:67–93

    CAS  Google Scholar 

  • Kaushik S, Seiliez I (2010) Protein and amino acid nutrition and metabolism in fish: current knowledge and future needs. Aquac Res 41:322–332

    Article  CAS  Google Scholar 

  • Keppler D, Decker K (1974) Glycogen. Determination with amyloglucosidase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic, New York, pp 1127–1131

    Google Scholar 

  • Klein RD, Borges VD, Rosa CE, Colares EP, Robaldo RB, Martinez PE, Bianchini A (2017) Effects of increasing temperature on antioxidant defense system and oxidative stress parameters in the Antarctic fish Notothenia coriiceps and Notothenia rossii. J Therm Biol 68:110–118

    Article  CAS  Google Scholar 

  • Kreiss CM, Michael K, Lucassen M, Jutfelt F, Motyka R, Dupont S, Pörtner HO (2015) Ocean warming and acidification modulate energy budget and gill ion regulatory mechanisms in Atlantic cod (Gadus morhua). J Comp Physiol B 185:767–781

    Article  CAS  Google Scholar 

  • Lewis JM, Ewart KV, Driedzic WR (2004) Freeze resistance in rainbow smelt (Osmerus mordax): seasonal pattern of glycerol and antifreeze protein levels and liver enzyme activity associated with glycerol production. Physiol Biochem Zool 77:415–422

    Article  CAS  Google Scholar 

  • Madeira D, Narciso L, Cabral HN, Vinagre C (2012) Thermal tolerance and potential impacts of climate change on coastal and estuarine organisms. J Sea Res 70:32–41

    Article  Google Scholar 

  • Magnoni LJ, Scarlato NA, Ojeda FP, Wohler OC (2013) Gluconeogenic pathway does not display metabolic cold adaptation in liver of Antarctic notothenioid fish. Polar Biol 36:661–671

    Article  Google Scholar 

  • Martínez-Porchas M, Martínez-Córdova LR, Ramos-Enriquez R (2009) Cortisol and Glucose: reliable indicators of fish stress? Pan-Am J Aquat Sci 4:158–178

    Google Scholar 

  • McCormick SD (1993) Methods for nonlethal gill biopsy and measurement of Na+, K+ -ATPase activity. Can J Fish Aquat Sci 50:656–658

    Article  CAS  Google Scholar 

  • McCormick SD, Farrell AP, Brauner CJ (2013) Euryhaline fishes. Academic Press, Oxford, Waltham

    Google Scholar 

  • McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Horm Behav 43:2–15

    Article  Google Scholar 

  • Metz JR, van den Burg EH, Bonga SEW, Flik G (2003) Regulation of branchial Na+/K+-ATPase in common carp Cyprinus carpio L. acclimated to different temperatures. J Exp Biol 206:2273–2280

    Article  CAS  Google Scholar 

  • Mommsen TP (1986) Comparative gluconeogenesis in hepatocytes from salmonid fishes. Can J Zool 64:1110–1115

    Article  CAS  Google Scholar 

  • Mommsen TP, Vijayan MM, Moon TW (1999) Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fisher 9:211–268

    Article  Google Scholar 

  • Moore S (1968) Amino acid analysis: aqueous dimethyl sulfoxide as solvent for the ninhydrin reaction. J Chem Biol 1242:6281–6283

    Google Scholar 

  • Paaijmans KP, Heinig RL, Seliga RA, Blanford JI, Blanford S, Murdock CC, Thomas MB (2013) Temperature variation makes ectotherms more sensitive to climate change. Global Change Biol 19:2373–2380

    Article  Google Scholar 

  • Pequeño G (1989) Peces de Chile. Lista sistemática revisada y comentada. Rev Biol Mar 24(2):1–132

    Google Scholar 

  • Pequeño G, Pavés H, Bertrán C, Vargas-Chacoff L (2010) Regimen estacional de alimentación limnética en el robalo Eleginops maclovinus (Valenciennes 1830), en el río Valdivia, Chile. Gayana 74:47–56

    Google Scholar 

  • Polakof S, Panserat S, Soengas JL, Moon TW (2012) Glucose metabolism in fish: a review. J Comp Physiol B 182:1015–1045

    Article  CAS  Google Scholar 

  • Pörtner HO, Bennett AF, Bozinovic F, Clarke A, Lardies MA, Lucassen M, Pelster B, Schiemer F, Stillman JH (2006) Trade-offs in thermal adaptation: the need for a molecular to ecological integration. Physiol Biochem Zool 79:295–313

    Article  Google Scholar 

  • Qiang J, Tao Y-F, He J, Bao J-W, Li H-X, Shi W-b XuP, Sun Y-L (2017) Influences of dietary lipid and temperature on growth, fat deposition and lipoprotein lipase expression in darkbarbel catfish (Pelteobagrus vachellii). J Therm Biol 69:191–198

    Article  CAS  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge, New York

    Book  Google Scholar 

  • Randall DJ, Wright PA (1987) Ammonia distribution and excretion in fish. Fish Physiol Biochem 3(3):107–120

    Article  CAS  Google Scholar 

  • Sandblom E, Grans A, Axelsson M, Seth H (2014) Temperature acclimation rate of aerobic scope and feeding metabolism in fishes: implications in a thermally extreme future. P Roy Soc B-Biol Sci 281:20141490

    Article  Google Scholar 

  • Sandersfeld T, Davison W, Lamare MD, Knust R, Richter C (2015) Elevated temperature causes metabolic trade-offs at the whole-organism level in the Antarctic fish Trematomus bernacchii. J Exp Biol 218:2373–2381

    Article  Google Scholar 

  • Sandersfeld T, Mark FC, Knust R (2017) Temperature-dependent metabolism in Antarctic fish: Do habitat temperature conditions affect thermal tolerance ranges? Polar Biol 40(1):141–149

    Article  Google Scholar 

  • Sardella BA, Cooper J, Gonzalez RJ, Brauner CJ (2004) The effect of temperature on juvenile Mozambique tilapia hybrids (Oreochromis mossambicus × O-urolepis homorum) exposed to full-strength and hypersaline seawater. Comp Biochem Phys A 137:621–629

    Article  Google Scholar 

  • Schulte PM (2015) The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J Exp Biol 218:1856–1866. https://doi.org/10.1242/jeb.118851

    Article  Google Scholar 

  • Seebacher F, Davison W, Lowe CJ, Franklin CE (2005) A falsification of the thermal specialization paradigm: compensation for elevated temperatures in Antarctic fishes. Biol Lett 1:151–154

    Article  Google Scholar 

  • Somero GN (2004) Adaptation of enzymes to temperature: searching for basic “strategies”. Comp Biochem Phys B 139:321–333

    Article  Google Scholar 

  • Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J Exp Biol 213:912–920

    Article  CAS  Google Scholar 

  • Stitt BC, Burness G, Burgomaster KA, Currie S, McDermid JL, Wilson CC (2014) Intraspecific variation in thermal tolerance and acclimation capacity in brook trout (Salvelinus fontinalis): physiological implications for climate change. Physiol Biochem Zool 87:15–29

    Article  Google Scholar 

  • Tang CH, Tzeng CS, Hwang LY, Lee TH (2009) Constant muscle water content and renal HSP90 expression reflect osmotic homeostasis in euryhaline teleosts acclimated to different environmental salinities. Zool Stud 48:435–441

    CAS  Google Scholar 

  • Tomanek L (2010) Variation in the heat shock response and its implication for predicting the effect of global climate change on species’ biogeographical distribution ranges and metabolic costs. J Exp Biol 213:971–979

    Article  CAS  Google Scholar 

  • Vanella FA, Boy CC, Fernandez DA (2012) Temperature effects on growing, feeding, and swimming energetics in the Patagonian blennie Eleginops maclovinus (Pisces: perciformes). Polar Biol 35:1861–1868

    Article  Google Scholar 

  • Vargas-Chacoff L, Arjona FJ, Polakof S, del Rio MPM, Soengas JL, Mancera JM (2009) Interactive effects of environmental salinity and temperature on metabolic responses of gilthead sea bream Sparus aurata. Comp Biochem Physiol A 154:417–424

    Article  Google Scholar 

  • Vargas-Chacoff L, Moneva F, Oyarzún R, Martínez D, Muñoz JLP, Bertrán C, Mancera JM (2014a) Environmental salinity-modified osmoregulatory response in the sub-Antarctic notothenioid fish Eleginops maclovinus. Polar Biol 37:1235–1245

    Article  Google Scholar 

  • Vargas-Chacoff L, Martínez D, Oyarzún R, Nualart D, Olavarría V, Yáñez A, Bertrán C, Ruiz-Jarabo I, Mancera JM (2014b) Combined effects of high stocking density and Piscirickettsia salmonis treatment on the immune system, metabolism and osmoregulatory responses of the Sub-Antarctic Notothenioid fish Eleginops maclovinus. Fish Shellfish Immunol 40:424–434

    Article  CAS  Google Scholar 

  • Vargas-Chacoff L, Saavedra E, Oyarzún R, Martínez-Montaño E, Pontigo JP, Yáñez A, Ruiz-Jarabo I, Mancera JM, Ortiz E, Bertrán C (2015) Effects on the metabolism, growth, digestive capacity and osmoregulation of juvenile of Sub-Antarctic Notothenioid fish Eleginops maclovinus acclimated at different salinities. Fish Physiol Biochem 41:1369–1381

    Article  CAS  Google Scholar 

  • Vargas-Chacoff L, Moneva F, Oyarzún R, Martínez D, Saavedra E, Ruiz-Jarabo I, Muñoz JLP, Bertrán C, Mancera JM (2016) Metabolic responses to salinity changes in the subantarctic notothenioid teleost Eleginops maclovinus. Polar Biol 39:1297–1308

    Article  Google Scholar 

  • Whittamore JM (2012) Osmoregulation and epithelial water transport: lessons from the intestine of marine teleost fish. J Comp Physiol B 182(1):1–39

    Article  Google Scholar 

  • Wilkie MP (1997) Mechanisms of ammonia excretion across fish gills. Comp Biochem Physiol Part A: Physiol 118(1):39–50

    Article  Google Scholar 

  • Windisch HS, Kathover R, Portner HO, Frickenhaus S, Lucassen M (2011) Thermal acclimation in Antarctic fish: transcriptomic profiling of metabolic pathways. Am J Physiol-Reg I 301:R1453–R1466

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Dirección de Investigación y Desarrollo (DID) and the Programa de Doctorado en Ciencias de la Acuicultura (both entities belonging to the Universidad Austral de Chile) for their support. The authors also want to thank the anonymous reviewers and Ashley VanCott for their comments that helped greatly improve this manuscript. R. Oyarzún is funded by the Comisión Nacional de Investigación Científica y Tecnológica through a national doctoral scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ricardo Oyarzún or Luis Vargas-Chacoff.

Ethics declarations

Funding

This study was funded by Fondap-Ideal Grant No. 15150003, Fondecyt Regular No. 1160877 and the Office of Research (Dirección de Investigación) of the Universidad Austral de Chile.

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

All the applicable international, national, and/or institutional guidelines for the care and use of animals were followed as mentioned at the beginning of the Materials and Methods section.

Additional information

Responsible Editor: H.-O. Pörtner.

Reviewed by H. Windisch and undisclosed experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyarzún, R., Muñoz, J.L.P., Pontigo, J.P. et al. Effects of acclimation to high environmental temperatures on intermediary metabolism and osmoregulation in the sub-Antarctic notothenioid Eleginops maclovinus . Mar Biol 165, 22 (2018). https://doi.org/10.1007/s00227-017-3277-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3277-8

Navigation