Skip to main content
Log in

Synthesis of nanocrystalline cellulose via ammonium persulfate-assisted swelling followed by oxidation and their chiral self-assembly

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A single-step ammonium persulfate (APS)-assisted swelling, followed by oxidation, can prepare nanocrystalline cellulose (NCC) from cotton linters. The APS-swelling is the critical step in the process, and the effects of swelling time, temperature and solid–liquid ratios were thoroughly investigated. The optimal conditions for NCC preparation were a swelling time of 3.0 h, a swelling temperature of 25 °C, and a solid–liquid ratio of 1:50. Upon heating at 60 °C, the persulfate enters the amorphous region of the cellulose and produces active SO ·−4 and H2O2, which effectively attack the two-phase structure of cellulose and oxidize the –OH group at the C-6 position. The swelling temperature of 25 °C plays a crucial role in breaking the hydrogen bonds between the molecular chains of cellulose. It permits the preparation of NCC with a high yield and crystallinity index. The crystalline structure of cellulose Iβ did not change after APS swelling and oxidation. The atomic force microscopic analysis confirmed the formation of spindle-shaped particles with a helical structure. Upon natural evaporation of the NCC suspension, brittle films were obtained, which exhibited a left-hand layered structure and high iridescence with a fingerprint-texture. These materials can be applied as strength additives and chiral templates.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7: -
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abitbol T, Kloser E, Gray DG (2013) Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20:785–794

    Article  CAS  Google Scholar 

  • Asefa T (2012) Chiral nematic mesoporous carbons from self-assembled nanocrystalline cellulose. Angew Chem Int Ed 51:2008–2010

    Article  CAS  Google Scholar 

  • Bardet R, Belgacem N, Bras J (2015) Flexibility and color monitoring of cellulose nanocrystal iridescent solid films using anionic or neutral polymers. ACS Appl Mater Interfaces 7:4010–4018

    Article  CAS  PubMed  Google Scholar 

  • Batmaz R, Mohammed N, Zaman M, Minhas G, Berry RM, Tam KC (2014) Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 21:1655–1665

    Article  CAS  Google Scholar 

  • Carlsson DO, Lindh J, Nyholm L, Strømme M, Mihranyan A (2014) Cooxidant-free TEMPO-mediated oxidation of highly crystalline nanocellulose in water. RSC Adv 4:52289–52298

    Article  CAS  Google Scholar 

  • Castro-Guerrero CF, Gray DG (2014) Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate. Cellulose 21:2567–2577

    Article  CAS  Google Scholar 

  • Cellulose In: Ullmann’s Encyclopedia of Industrial Chemistry

  • Chen W, Li Q, Cao J, Liu Y, Li J, Zhang J, Luo S, Yu H (2015) Revealing the structures of cellulose nanofiber bundles obtained by mechanical nanofibrillation via TEM observation. Carbohydr Polym 117:950–956

    Article  CAS  PubMed  Google Scholar 

  • Cheng M, Qin Z, Liu Y, Qin Y, Li T, Chen L, Zhu M (2014) Efficient extraction of carboxylated spherical cellulose nanocrystals with narrow distribution through hydrolysis of lyocell fibers by using ammonium persulfate as an oxidant. J Mater Chem A 2:251–258

    Article  CAS  Google Scholar 

  • Cheng S, Zhang Y, Cha R, Yang J, Jiang X (2016) Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties. Nanoscale 8:973–978

    Article  CAS  PubMed  Google Scholar 

  • Chindawong C, Johannsmann D (2014) An anisotropic ink based on crystalline nanocellulose: potential applications in security printing. J Appl Polym Sci 131(22):41063

    Article  CAS  Google Scholar 

  • Cui S, Zhang S, Ge S, Xiong L, Sun Q (2016) Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis. Ind Crops Prod 83:346–352

    Article  CAS  Google Scholar 

  • Cuissinat C, Navard P (2006) Swelling and dissolution of cellulose part II: free floating cotton and wood fibres in NaOH–water–additives systems. Macromol Symp 244:19–30

    Article  CAS  Google Scholar 

  • Domingues RMA, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromol 15(7):2327–2346

    Article  CAS  Google Scholar 

  • Dong S, Roman M (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129:13810–13811

    Article  CAS  PubMed  Google Scholar 

  • Duchemin BJC, Mathew AP, Oksman K (2009) All-cellulose composites by partial dissolution in the ionic liquid 1-butyl-3-methylimidazolium chloride. Compos A Appl Sci Manuf 40:2031–2037

    Article  CAS  Google Scholar 

  • Fang Z, Zhu H, Yuan Y, Ha D, Zhu S, Preston C, Chen Q, Li Y, Han X, Lee S, Chen G, Li T, Munday J, Huang J, Hu L (2014) Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett 14(2):765–773

    Article  CAS  PubMed  Google Scholar 

  • Flauzino Neto WP, Silvério HA, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue—Soy hulls. Ind Crops Prod 42:480–488

    Article  CAS  Google Scholar 

  • Gardner KH, Blackwell J (1974) The structure of native cellulose. Biopolymers 13:1975–2001

    Article  CAS  Google Scholar 

  • Guidetti G, Atifi S, Vignolini S, Hamad WY (2016) Flexible photonic cellulose nanocrystal films. Adv Mater 28:10042–10047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamad WY, Hu TQ (2010) Structure–process–yield interrelations in nanocrystalline cellulose extraction. Can J Chem Eng 88:392–402

    CAS  Google Scholar 

  • Han J, Zhou C, Wu Y, Liu F, Wu Q (2013) Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromol 14:1529–1540

    Article  CAS  Google Scholar 

  • Huang J, Zhu H, Chen Y, Preston C, Rohrbach K, Cumings J, Hu L (2013) Highly Transparent and Flexible Nanopaper Transistors. ACS Nano 7(3):2106–2113

    Article  CAS  PubMed  Google Scholar 

  • Huq T, Salmieri S, Khan A, Khan RA, Le Tien C, Riedl B, Fraschini C, Bouchard J, Uribe-Calderon J, Kamal MR, Lacroix M (2012) Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydr Polym 90:1757–1763

    Article  CAS  PubMed  Google Scholar 

  • Immergut E, Ranby B, Mark H (1953) Recent work on molecular weight of cellulose. Ind Eng Chem 45:2483–2490

    Article  CAS  Google Scholar 

  • Islam MS, Kao N, Bhattacharya SN, Gupta R, Choi HJ (2018) Potential aspect of rice husk biomass in Australia for nanocrystalline cellulose production. Chin J Chem Eng 26:465–476

    Article  CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    Article  CAS  PubMed  Google Scholar 

  • Jackson JK, Letchford K, Wasserman BZ, Ye L, Hamad WY, Burt HM (2011) The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int J Nanomed 6:321–330

    CAS  Google Scholar 

  • Kian LK, Jawaid M, Ariffin H, Karim Z (2018) Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose. Int J Biol Macromol 114:54–63

    Article  CAS  PubMed  Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating Biopolymer and Sustainable Raw Material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Lam E, Hrapovic S, Majid E, Chong JH, Luong JHT (2012) Catalysis using gold nanoparticles decorated on nanocrystalline cellulose. Nanoscale 4:997–1002

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Heo MH, Lee H, Lee H-H, Jeong H, Kim Y-W, Shin J (2018) Facile and eco-friendly extraction of cellulose nanocrystals via electron beam irradiation followed by high-pressure homogenization. Green Chem 20:2596–2610

    Article  CAS  Google Scholar 

  • Leung ACW, Hrapovic S, Lam E, Liu Y, Male KB, Mahmoud KA, Luong JHT (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7:302–305

    Article  CAS  PubMed  Google Scholar 

  • Lin N, Bruzzese C, Dufresne A (2012) TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges. ACS Appl Mater Interfaces 4:4948–4959

    Article  CAS  PubMed  Google Scholar 

  • Ling Z, Edwards JV, Guo Z, Prevost NT, Nam S, Wu Q, French AD, Xu F (2019) Structural variations of cotton cellulose nanocrystals from deep eutectic solvent treatment: micro and nano scale. Cellulose 26:861–876

    Article  CAS  Google Scholar 

  • Liu Y, Wang Q (2014) Removal of elemental mercury from flue gas by thermally activated ammonium persulfate in a bubble column reactor. Environ Sci Technol 48:12181–12189

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Guo B, Xia Q, Meng J, Chen W, Liu S, Wang Q, Liu Y, Li J, Yu H (2017) Efficient cleavage of strong hydrogen bonds in cotton by deep eutectic solvents and facile fabrication of cellulose nanocrystals in high yields. ACS Sustain Chem Eng 5:7623–7631

    Article  CAS  Google Scholar 

  • Lu Q, Cai Z, Lin F, Tang L, Wang S, Huang B (2016a) Extraction of cellulose nanocrystals with a high yield of 88% by simultaneous mechanochemical activation and phosphotungstic acid hydrolysis. ACS Sustain Chem Eng 4:2165–2172

    Article  CAS  Google Scholar 

  • Lu Q, Cai Z, Lin F, Tang L, Wang S, Huang B (2016b) Extraction of cellulose nanocrystals with a high yield of 88% by simultaneous mechanochemical activation and phosphotungstic acid hydrolysis. ACS Sustain Chem Eng 4(4):2165–2172

    Article  CAS  Google Scholar 

  • Ma Y, Xia Q, Liu Y, Chen W, Liu S, Wang Q, Liu Y, Li J, Yu H (2019) Production of nanocellulose using hydrated deep eutectic solvent combined with ultrasonic treatment. ACS Omega 4:8539–8547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmoud KA, Male KB, Hrapovic S, Luong JHT (2009) Cellulose nanocrystal/gold nanoparticle composite as a matrix for enzyme immobilization. ACS Appl Mater Interfaces 1:1383–1386

    Article  CAS  PubMed  Google Scholar 

  • Majoinen J, Kontturi E, Ikkala O, Gray DG (2012) SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions. Cellulose 19:1599–1605

    Article  CAS  Google Scholar 

  • Mantanis GI, Young RA, Rowell RM (1994) Swelling of wood. Wood Sci Technol 28:119–134

    Article  CAS  Google Scholar 

  • Mantanis GI, Young RA, Rowell RM (1995) Swelling of compressed cellulose fiber webs in organic liquids. Cellulose 2:1–22

    CAS  Google Scholar 

  • Mascheroni E, Rampazzo R, Ortenzi MA, Piva G, Bonetti S, Piergiovanni L (2016) Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials. Cellulose 23:779–793

    Article  CAS  Google Scholar 

  • Mohanta V, Madras G, Patil S (2014) Layer-by-layer assembled thin films and microcapsules of nanocrystalline cellulose for hydrophobic drug delivery. ACS Appl Mater Interfaces 6:20093–20101

    Article  CAS  PubMed  Google Scholar 

  • Montanari S, Roumani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38:1665–1671

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  PubMed  Google Scholar 

  • Ooi SY, Ahmad I, Amin MCIM (2016) Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems. Ind Crops Prod 93:227–234

    Article  CAS  Google Scholar 

  • Pable D, Chattergi S, Venugopalan MV, Sen TK, Giri JD, Sarkar D (2014) Soil quality assessment using fuzzy modelling - a case study in rainfed cotton growing agro-ecological subregions of vidarbha, Maharashtra Cotton Res J 5(2):126–131

    Google Scholar 

  • Pei L, Luo Y, Gu X, Dou H, Wang J (2019) Diffusion mechanism of aqueous solutions and swelling of cellulosic fibers in silicone non-aqueous dyeing system. Polymers 11:411

    Article  PubMed Central  CAS  Google Scholar 

  • Potthast A, Rosenau T, Kosma P (2006) Analysis of oxidized functionalities in cellulose. In: Klemm D (ed) Polysaccharides II. Springer, Berlin, pp 1–48

    Google Scholar 

  • Qi H, Cai J, Zhang L, Kuga S (2009) Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromol 10:1597–1602

    Article  CAS  Google Scholar 

  • Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172

    Article  CAS  PubMed  Google Scholar 

  • Röder T, Morgenstern B, Schelosky N, Glatter O (2001) Solutions of cellulose in N,N-dimethylacetamide/lithium chloride studied by light scattering methods. Polymer 42:6765–6773

    Article  Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. the effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromol 5:1983–1989

    Article  CAS  Google Scholar 

  • Schneider M, Graillat C, Boutti S, McKenna TF (2001) Decomposition of APS and H2O2 for emulsion polymerisation. Polym Bull 47:269–275

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Shamskar KR, Heidari H, Rashidi A (2016) Preparation and evaluation of nanocrystalline cellulose aerogels from raw cotton and cotton stalk. Ind Crops Prod 93:203–211

    Article  CAS  Google Scholar 

  • Shankar S, Rhim J-W (2016) Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based composite films. Carbohydr Polym 135:18–26

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Crne M, Park JO, Srinivasarao M (2009) Structural origin of circularly polarized iridescence in jeweled beetles. Science 325:449

    Article  CAS  PubMed  Google Scholar 

  • Shopsowitz KE, Qi H, Hamad WY, MacLachlan MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468:422

    Article  CAS  PubMed  Google Scholar 

  • Sirviö JA, Visanko M, Liimatainen H (2016) Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production. Biomacromol 17:3025–3032

    Article  CAS  Google Scholar 

  • Sonia A, Priya Dasan K (2013) Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus sabdariffa. Carbohydr Polym 92:668–674

    Article  CAS  PubMed  Google Scholar 

  • Spinu M, Dos Santos N, Le Moigne N, Navard P (2011) How does the never-dried state influence the swelling and dissolution of cellulose fibres in aqueous solvent? Cellulose 18:247–256

    Article  CAS  Google Scholar 

  • Straley JP (1976) Theory of piezoelectricity in nematic liquid crystals, and of the cholesteric ordering. Phys Rev A 14:1835–1841

    Article  CAS  Google Scholar 

  • Sun B, Zhang M, Hou Q, Liu R, Wu T, Si C (2016) Further characterization of cellulose nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton fibers. Cellulose 23:439–450

    Article  CAS  Google Scholar 

  • Thambiraj S, Shankaran DR (2017) Preparation and physicochemical characterization of cellulose nanocrystals from industrial waste cotton. Appl Surf Sci 412:405–416

    Article  CAS  Google Scholar 

  • Wang Z, Wang Z, Ye Y, Chen N, Li H (2016) Study on the removal of nitric oxide (NO) by dual oxidant (H2O2/S2O82 −) system. Chem Eng Sci 145:133–140

    Article  CAS  Google Scholar 

  • Xiong R, Han Y, Wang Y, Zhang W, Zhang X, Lu C (2014) Flexible, highly transparent and iridescent all-cellulose hybrid nanopaper with enhanced mechanical strength and writable surface. Carbohydr Polym 113:264–271

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Liang S, Fan J, Sheng G, Luo X (2016) Amperometric sensing of nitrite using a glassy carbon electrode modified with a multilayer consisting of carboxylated nanocrystalline cellulose and poly(diallyldimethyl ammonium) ions in a PEDOT host. Microchim Acta 183:2031–2037

    Article  CAS  Google Scholar 

  • Yang H, van de Ven TGM (2016) A bottom-up route to a chemically end-to-end assembly of nanocellulose fibers. Biomacromol 17:2240–2247

    Article  CAS  Google Scholar 

  • Yang H, Tejado A, Alam N, Antal M, van de Ven TGM (2012) Films prepared from electrosterically stabilized nanocrystalline cellulose. Langmuir 28:7834–7842

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Xie H, Du H, Zhang X, Zou Z, Zou Y, Liu W, Lan H, Zhang X, Si C (2019) Facile extraction of thermally stable and dispersible cellulose nanocrystals with high yield via a green and recyclable FeCl3-catalyzed deep eutectic solvent system. ACS Sustain Chem Eng 7:7200–7208

    Article  CAS  Google Scholar 

  • Zhang YHP, Cui J, Lynd LR, Kuang LR (2006) A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromol 7:644–648

    Article  CAS  Google Scholar 

  • Zou X, Tan X, Berry R, Godbout JDL (2016) Flexible, iridescent nanocrystalline cellulose film, and method for preparation, Google Patents

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (Grant Nos. 21566014 and 21766016), China Postdoctoral Science Foundation (Grant No. 2019M653845XB) and Postdoctoral Research Funding of Kunming University of Science and Technology (Grant No. 10988880). H. Wang special thanks to Prof. Zhuang, KMUST for providing the facilities for POM measurements. M. Pudukudy gratefully acknowledges the financial support fromYunnan Province Postdoctoral Research Funding and Yunnan Province Postdoctoral Orientation Training Funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingming Jia or Shaoyun Shan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2818 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Pudukudy, M., Ni, Y. et al. Synthesis of nanocrystalline cellulose via ammonium persulfate-assisted swelling followed by oxidation and their chiral self-assembly. Cellulose 27, 657–676 (2020). https://doi.org/10.1007/s10570-019-02789-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02789-z

Keywords

Navigation