Skip to main content
Log in

Fabrication and characterization of cellulose triacetate porous membranes by combined nonsolvent-thermally induced phase separation

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose triacetate (CTA) porous membranes were firstly prepared by the combined nonsolvent-thermally induced phase separation (N-TIPS) method. Dimethyl sulfone (DMSO2) and polyethylene glycol (PEG400) were respectively chosen as the TIPS solvent and additive of CTA, while water was used as the NIPS nonsolvent. Their Hansen solubility parameters were analyzed to understand the solution thermodynamics. Detailed investigation was applied on the effects of the polymer concentration, the coagulation bath temperature and the coagulation bath composition on the CTA porous membranes. It is found that both NIPS and TIPS effects simultaneously exist and compete with each other, and further affect the membrane morphology and performance. The NIPS effect can be promoted by lowering the CTA concentration or elevating the coagulation bath temperature, resulting in figure-like macropores and porous top surface. The obtained CTA porous membranes show a water flux as high as 2002.9 ± 55.2 L/m2h. On the contrary, the TIPS effect becomes the dominant factor, and leads to the symmetric sponge-like pores, which facilitate to enhance the mechanical properties. Besides, CTA porous membranes present large surface pore size as well as low fraction of figure-like macropores as increasing the DMSO2 content in the coagulation bath. These CTA porous membranes with excellent water permeability and mechanical strength are promising candidates for microfiltration or the porous substrates of thin film composite membranes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

CTA:

Cellulose triacetate

CA:

Cellulose acetate

PVDF:

Poly(vinylidene fluoride)

TIPS:

Thermally induced phase separation

NIPS:

Nonsolvent induced phase separation

N-TIPS:

Combined nonsolvent-thermally induced phase separation

RO:

Reverse osmosis

PEG400:

Polyethylene glycol

DMSO2:

Dimethyl sulfone

PVA:

Polyvinyl alcohol

NMR:

Nuclear magnetic resonance spectroscopy

FESEM:

Field emission scanning electron microscopy

ɛ :

Porosity of membrane (%)

w 0 :

Weight of wet membrane (g)

w 1 :

Weight of dried membrane (g)

ρ p :

Density of CTA (g/cm3)

ρ water :

Density of water (g/cm3)

J w :

Pure water flux (L/m2h)

V :

Volume of penetrative water (L)

A :

Effective membrane area (m2)

Δt :

Testing time (h)

R a :

Hansen space (MPa1/2)

δ d :

Dispersion interaction (MPa1/2)

δ p :

Polar interaction (MPa1/2)

δ h :

Hydrogen bond interaction (MPa1/2)

References

  • Budtova T, Navard P (2015) Cellulose in NaOH–water based solvents: a review. Cellulose 23:5–55

    Article  CAS  Google Scholar 

  • Cha BJ, Yang JM (2007) Preparation of poly(vinylidene fluoride) hollow fiber membranes for microfiltration using modified TIPS process. J Membr Sci 291:191–198

    Article  CAS  Google Scholar 

  • Chen G, Sun W, Wu Q, Kong Y, Xu Z, Xu S, Zheng X (2017) Effect of cellulose triacetate membrane thickness on forward-osmosis performance and application for spent electroless nickel plating baths. J Appl Polym Sci 10(1002):45049

    Article  CAS  Google Scholar 

  • Chen K, Xiao C, Liu H, Li G, Meng X (2018a) Structure design on reinforced cellulose triacetate composite membrane for reverse osmosis desalination process. Desalination 441:35–43

    Article  CAS  Google Scholar 

  • Chen K, Xiao C, Huang Q, Liu H, Tang Y (2018b) Fabrication and properties of graphene oxide-embedded cellulose triacetate RO composite membrane via melting method. Desalination 425:175–184

    Article  CAS  Google Scholar 

  • Cui ZH, Hassankiadeh NT, Lee SY, Woo KT, Lee JM, Sanguineti A, Arcella V et al (2015) Tailoring novel fibrillar morphologies in poly(vinylidene fluoride) membranes using a low toxic triethylene glycol diacetate (TEGDA) diluent. J Membr Sci 473:128–136

    Article  CAS  Google Scholar 

  • Fei P, Liao L, Meng J, Cheng B, Hu X, Song J (2018) Synthesis, characterization and antibacterial properties of reverse osmosis membranes from cellulose bromoacetate. Cellulose 25:5967–5984

    Article  CAS  Google Scholar 

  • French AD (2017) Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose 24:4605–4609

    Article  CAS  Google Scholar 

  • Gao A, Yang Q, Xue L (2016) Poly (l-lactic acid)/silk fibroin composite membranes with improved crystallinity and thermal stability from non-solvent induced phase separation processes involving hexafluoroisopropanol. Compos Sci Technol 132:38–46

    Article  CAS  Google Scholar 

  • Hansen CM (2000) Hansen solubility parameters. Springer, New York

    Google Scholar 

  • Hassankiadeh NT, Cui Z, Kim JH, Shin DW, Lee SY, Sanguineti A, Arcella V et al (2015) Microporous poly(vinylidene fluoride) hollow fiber membranes fabricated with PolarClean as water-soluble green diluent and additives. J Membr Sci 479:204–212

    Article  CAS  Google Scholar 

  • Jie X, Cao Y, Qin J, Liu J, Yuan Q (2005) Influence of drying method on morphology and properties of asymmetric cellulose hollow fiber membrane. J Membr Sci 246:157–165

    Article  CAS  Google Scholar 

  • Jung JT, Kim JF, Wang HH, Nicolo E, Drioli E, Lee YM (2016) Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS). J Membr Sci 514:250–263

    Article  CAS  Google Scholar 

  • Jung JT, Wang HH, Kim JF, Lee J, Kim JS, Drioli E, Lee YM (2018) Tailoring nonsolvent-thermally induced phase separation (N-TIPS) effect using triple spinneret to fabricate high performance PVDF hollow fiber membranes. J Membr Sci 559:117–126

    Article  CAS  Google Scholar 

  • Kaštelan-Kunst L, Dananić V, Kunst B, Košutić K (1996) Preparation and porosity of cellulose triacetate reverse osmosis membranes. J Membr Sci 109:223–230

    Article  Google Scholar 

  • Kim JF, Kim JH, Lee YM, Drioli E (2016) Thermally induced phase separation and electrospinning methods for emerging membrane applications: a review. AIChE J 62:461–490

    Article  CAS  Google Scholar 

  • Li H, Cao Y, Qin J, Jie X, Wang T, Liu J, Yuan Q (2006) Development and characterization of anti-fouling cellulose hollow fiber UF membranes for oil–water separation. J Membr Sci 279:328–335

    Article  CAS  Google Scholar 

  • Li J, Xu Z, Yang H, Feng C, Shi J (2008) Hydrophilic microporous PES membranes prepared by PES/PEG/DMAc casting solutions. J Appl Polym Sci 107:4100–4108

    Article  CAS  Google Scholar 

  • Li G, Li X, He T, Jiang B, Gao C (2013) Cellulose triacetate forward osmosis membranes: preparation and characterization. Desalin Water Treat 51:2656–2665

    Article  CAS  Google Scholar 

  • Liu J, Lu X, Li J, Wu C (2014) Preparation and properties of poly (vinylidene fluoride) membranes via the low temperature thermally induced phase separation method. J Polym Res 21:568

    Article  CAS  Google Scholar 

  • Loeb S (1963) Sea water demineralization by means of an osmotic membrane. Adv Chem Ser 38:117–132

    Article  CAS  Google Scholar 

  • Matsuyama H, Takida Y, Maki T, Teramoto M (2002) Preparation of porous membrane by combined use of thermally induced phase separation and immersion precipitation. Polymer 43:5243–5248

    Article  CAS  Google Scholar 

  • McKelvey SA, Koros WJ (1996) Phase separation, vitrification, and the manifestation of macrovoids in polymeric asymmetric membranes. J Membr Sci 112:29–39

    Article  CAS  Google Scholar 

  • Nguyen TPN, Yun E, Kim I, Kwon Y (2013) Preparation of cellulose triacetate/cellulose acetate (CTA/CA)-based membranes for forward osmosis. J Membr Sci 433:49–59

    Article  CAS  Google Scholar 

  • Ong YK, Widjojo N, Chung T (2011) Fundamentals of semi-crystalline poly(vinylidene fluoride) membrane formation and its prospects for biofuel (ethanol and acetone) separation via pervaporation. J Membr Sci 378:149–162

    Article  CAS  Google Scholar 

  • Ong RC, Chung T-S, Wit JS, Helmer BJ (2015) Novel cellulose ester substrates for high performance flat-sheet thin-film composite (TFC) forward osmosis (FO) membranes. J Membr Sci 473:63–71

    Article  CAS  Google Scholar 

  • Santos NM, Puls J, Saake B, Navard P (2013) Effects of nitren extraction on a dissolving pulp and influence on cellulose dissolution in NaOH–water. Cellulose 20:2013–2026

    Article  CAS  Google Scholar 

  • Song H, Zhu L, Zeng Z, Xue Q (2018) High performance forward osmosis cellulose acetate (CA) membrane modified by polyvinyl alcohol and polydopamine. J Polym Res 25:159

    Article  CAS  Google Scholar 

  • Su J, Chung TS, Helmer BJ, Wit JS (2012) Enhanced double-skinned FO membranes with inner dense layer for wastewater treatment and macromolecule recycle using Sucrose as draw solute. J Membr Sci 396:92–100

    Article  CAS  Google Scholar 

  • Tang Y, He Y, Wang X (2015) Investigation on the membrane formation process of polymer–diluent system via thermally induced phase separation accompanied with mass transfer across the interface: dissipative particle dynamics simulation and its experimental verification. J Membr Sci 474:196–206

    Article  CAS  Google Scholar 

  • Wang L, Huang D, Wang X, Meng X, Lv Y, Wang X, Miao R (2015) Preparation of PVDF membranes via the low-temperature TIPS method with diluent mixtures: the role of coagulation conditions and cooling rate. Desalination 361:25–37

    Article  CAS  Google Scholar 

  • Wang Q, Sun J, Yao Q, Ji C, Liu J, Zhu Q (2018) 3D printing with cellulose materials. Cellulose 25:4275–4301

    Article  CAS  Google Scholar 

  • Wu J, Yuan Q (2002) Gas permeability of a novel cellulose membrane. J Membr Sci 204:185–194

    Article  CAS  Google Scholar 

  • Wu Q, Wan L, Xu Z (2012) Structure and performance of polyacrylonitrile membranes prepared via thermally induced phase separation. J Membr Sci 409–410:355–364

    Article  CAS  Google Scholar 

  • Wu Q, Liu B, Li M, Wan L, Xu Z (2013) Polyacrylonitrile membranes via thermally induced phase separation: effects of polyethylene glycol with different molecular weights. J Membr Sci 437:227–236

    Article  CAS  Google Scholar 

  • Wu Z, Cui Z, Li T, Qin S, He B, Han N, Li J (2017) Fabrication of PVDF-based blend membrane with a thin hydrophilic deposition layer and a network structure supporting layer via the thermally induced phase separation followed by non-solvent induced phase separation process. Appl Surf Sci 419:429–438

    Article  CAS  Google Scholar 

  • Wu Q, Xing X, Yu Y, Gu L, Xu Z (2018) Novel thin film composite membranes supported by cellulose triacetate porous substrates for high-performance forward osmosis. Polymer 153:150–160

    Article  CAS  Google Scholar 

  • Xu H, Lang W, Zhang X, Guo Y (2015) Preparation and characterizations of charged PVDF membranes via composite thermally induced phase separation (C-TIPS) method. J Ind Eng Chem 21:1005–1013

    Article  CAS  Google Scholar 

  • Yang L, Wang Z, Zhang J, Song P, Liu L (2017) TIPS-co-NIPS method to prepare PES substrate with enhanced permeability for TFC-FO membrane. J Taiwan Inst Chem E 80:137–148

    Article  CAS  Google Scholar 

  • Yasukawa M, Mishima S, Tanaka Y, Takahashi T, Matsuyama H (2017) Thin-film composite forward osmosis membrane with high water flux and high pressure resistance using a thicker void-free polyketone porous support. Desalination 402:1–9

    Article  CAS  Google Scholar 

  • Young T, Cheng L, Lin D, Fane L, Chuang W (1999) Mechanisms of PVDF membrane formation by immersion-precipitation in soft (1-octanol) and harsh (water) nonsolvents. Polymer 40:5315–5323

    Article  CAS  Google Scholar 

  • Yu Y, Wu Q, Liang H, Gu L, Xu Z (2016) Preparation and characterization of cellulose triacetate membranes via thermally induced phase separation. J Appl Polym Sci 134:44454

    Google Scholar 

  • Zhang S, Zhang R, Jean YC, Paul DR, Chung T (2012) Cellulose esters for forward osmosis: characterization of water and salt transport properties and free volume. Polymer 53:2664–2672

    Article  CAS  Google Scholar 

  • Zhang H, Lu X, Liu Z, Ma Z, Wu S, Li Z, Kong X et al (2017) Study of the dual role mechanism of water-soluble additive in low temperature thermally-induced phase separation. J Membr Sci 543:1–9

    Article  CAS  Google Scholar 

  • Zhao L, Liu M, Xu Z, Wei Y, Xu M (2015) PSF hollow fiber membrane fabricated from PSF–HBPE–PEG400–DMAc dope solutions via reverse thermally induced phase separation (RTIPS) process. Chem Eng Sci 137:131–139

    Article  CAS  Google Scholar 

  • Zhao J, Chong JY, Shi L, Wang R (2019) Explorations of combined nonsolvent and thermally induced phase separation (N-TIPS) method for fabricating novel PVDF hollow fiber membranes using mixed diluents. J Membr Sci 572:210–222

    Article  CAS  Google Scholar 

  • Zuo Y, Chi X, Xu Z, Guo X (2017) Morphological controlling of CTA forward osmosis membrane using different solvent-nonsolvent compositions in first coagulation bath. J Polym Res 24:156

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is financially supported by the Natural Science Foundation of Zhejiang Province (No. LY18E030002), Natural Science Foundation of Ningbo (Nos. 2018A610111, 2017A610052), Key Laboratory of Marine Materials and Related Technologies (No. 2016K07), and K.C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Yun Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, XY., Gu, L., Jin, Y. et al. Fabrication and characterization of cellulose triacetate porous membranes by combined nonsolvent-thermally induced phase separation. Cellulose 26, 3747–3762 (2019). https://doi.org/10.1007/s10570-019-02347-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02347-7

Keywords

Navigation