Skip to main content
Log in

Glucose, not cellobiose, is the repeating unit of cellulose and why that is important

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Despite nomenclature conventions of the International Union of Pure and Applied Chemistry and the International Union of Biochemistry and Molecular Biology, the repeating unit of cellulose is often said to be cellobiose instead of glucose. This review covers arguments regarding the repeating unit in cellulose molecules and crystals based on biosynthesis, shape, crystallographic symmetry, and linkage position. It is concluded that there is no good reason to disagree with the official nomenclature. Statements that cellobiose is the repeating unit add confusion and limit thinking on the range of possible shapes of cellulose. Other frequent flaws in drawings with cellobiose as the repeating unit include incorporation of O-1 as the linkage oxygen atom instead of O-4 (the O-1 hydroxyl is the leaving group in glycoside synthesis). Also, n often erroneously represents the number of cellobiose units when n should denote the degree of polymerization i.e., the number of glucose residues in the polysaccharide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barber GA, Hassid WZ (1965) Synthesis of cellulose by enzyme preparations from the developing cotton boll. Nature 207:295–296

    Article  CAS  Google Scholar 

  • Barber GA, Elbein AD, Hassid WZ (1964) The synthesis of cellulose by enzyme systems from higher plants. J Biol Chem 239:4056–4061

    CAS  Google Scholar 

  • Cocinero EJ, Gamblin DP, Davis BG, Simons JP (2009) The building blocks of cellulose: the intrinsic conformational structures of cellobiose, its epimer, lactose, and their singly hydrated complexes. J Am Chem Soc 131:11117–11123

    Article  CAS  Google Scholar 

  • Ernst A, Vasella A (1996) Oligosaccharide analogues of polysaccharides: part 8. Orthogonally protected cellobiose-derived dialkynes. A convenient method for the regioselective bromo- and protodegermylation of trimethylgermyl- and trimethylsilyl-protected dialkynes. Helv Chim Acta 79:1279–1294

    Article  CAS  Google Scholar 

  • French AD (2011) Csonka GI (2011) Hydroxyl orientations in cellobiose and other polyhydroxyl compounds: modeling versus experiment. Cellulose 18:897–909

    Article  CAS  Google Scholar 

  • French AD, Johnson GP (2004) What crystals of small analogs are trying to tell us about cellulose structure. Cellulose 11:5–22

    Article  CAS  Google Scholar 

  • French AD, Johnson GP (2006) Quantum mechanics studies of cellobiose conformations. Can J Chem 84:603–612

    Article  CAS  Google Scholar 

  • French AD, Johnson GP (2007) Linkage and pyranosyl ring twisting in cyclodextrins. Carbohydr Res 342:1223–1237

    Article  CAS  Google Scholar 

  • French AD, Johnson GP, Cramer CJ, Csonka GI (2012) Conformational analysis of cellobiose by electronic structure theories. Carbohydr Res 350:68–76

    Article  CAS  Google Scholar 

  • Glaser L (1957) The enzymic synthesis of cellulose by Acetobacter xylinum. Biochim Biophys Acta 25:436 (single page note)

    Article  CAS  Google Scholar 

  • Glasser WG, Atalla RH, Blackwell J, Brown RM Jr, Burchard W, French AD, Klemm DO, Nishiyama Y (2012) About the structure of cellulose: debating the Lindman hypothesis. Cellulose 19:589–598

    Article  CAS  Google Scholar 

  • JCBN (1982) Polysaccharide nomenclature recommendations 1980* Pure Appl Chem 54:1523–1526; J Biol Chem 257:3352–3354; https://www.iupac.org/publications/pac/1982/pdf/5408x1523.pdf

  • JCBN (1983) Symbols for specifying the conformation of polysaccharide chains. Recommendations 1981, Eur J Biochem 131:5–7; Pure Appl Chem 55:1269–1272. http://www.chem.qmul.ac.uk/iupac/misc/psac.html

  • Kalenius E, Kekäläinen T, Neitola R, Beyeh K, Rissanen K, Vainiotalo P (2008) Size- and structure-selective noncovalent recognition of saccharides by tetraethyl and tetraphenyl resorcinarenes in the gas phase. Chem Eur J 14:5220–5228

    Article  CAS  Google Scholar 

  • Kouwijzer MLCE, van Euck BP, Kooijman H, Kroon J (1995) An extension of the GROMOS force field for carbohydrates, resulting in improvement of the crystal structure determination of α-d-galactose. Acta Crystalloogr Sect B 51:209–220

    Article  Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromol 2:410–416

    Article  CAS  Google Scholar 

  • Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J Appl Cryst 41:466–470

    Article  CAS  Google Scholar 

  • Meader D, Atkins EDT, Happey F (1978) Cellulose trinitrate: molecular conformation and packing considerations. Polymer 19:1371–1374

    Article  CAS  Google Scholar 

  • Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    Article  CAS  Google Scholar 

  • Oscarson S (1999) Conjugation of monosaccharides – synthesis of glycosidic linkages in glycosides, oligosaccharides, and polysaccharides. In: Finch P (ed) Carbohydrates Structures, syntheses and dynamics. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Strati GL, Willett JL, Momany FA (2002) Ab initio computational study of β-cellobiose conformers using B3LYP/6-311 ++G**. Carbohydr Res 337:1833–1849

    Article  CAS  Google Scholar 

  • Wada M, Chanzy H, Nishiyama Y, Langan P (2004) Cellulose IIII Crystal Structure and Hydrogen Bonding by Synchrotron X-ray and Neutron Fiber Diffraction. Macromolecules 37:8548–8555

    Article  CAS  Google Scholar 

  • Wada M, Heux L, Nishiyama Y, Langan P (2009) X-ray crystallographic, scanning microprobe X-ray diffraction, and cross-polarized/magic angle spinning 13C NMR studies of the structure of cellulose IIIII. Biomacromol 10:302–309

    Article  CAS  Google Scholar 

  • Whitaker PM, Nieduszynski IA, Atkins EDT (1974) Structural aspects of soda-cellulose II. Polymer 15:125–127

    Article  CAS  Google Scholar 

Download references

Acknowledgments

John Vercellotti, Carlos Stortz, and Hee-Jin Kim all commented helpfully on a preliminary version of the manuscript. Contributions of the anonymous reviewers for the journal are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred D. French.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

French, A.D. Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose 24, 4605–4609 (2017). https://doi.org/10.1007/s10570-017-1450-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1450-3

Keywords

Navigation