Skip to main content
Log in

Sugarcane bagasse fiber and its cellulose nanocrystals for polymer reinforcement and heavy metal adsorbent: a review

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The development of cellulose and nanocellulose based materials have been a subject of intense research in recent decades due to their renewability, high strength and stiffness, as well as environmental friendliness. Advancements in industrial biotechnology provide ample opportunities for economic utilization of cellulosic agro-residues such as sugarcane bagasse. Sugarcane bagasse (SCB) is an abundant fibrous waste of the sugarcane industry and it is normally used for animal feed, enzymes, paper and biofuel conversion application. Due to its high cellulose content (40–50%), SCB is a good source of cellulose fiber for the synthesis of cellulose nanocrystals. This review reports recent developments, current results and trends in the field of sugarcane bagasse fiber (SCBF) and sugarcane bagasse fiber cellulose nanocrystals (SBFCNC) as a green material in the manufacturing of composite materials and heavy metal adsorbent. Herein, the preparation methods and properties of the SCBF and SBFCNC composites are discussed. The reinforcing abilities of the SCBF and SBFCNC in various polymers are summarized. Also, the potential applications of SBFCNC as heavy metal adsorbent are documented. These demonstrated that we can widen the application of cellulose nanocrystals (synthesized from agriculture waste) while contribute to the sustainable development of the related products.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

[Reproduced from Khiari (2017)]

Fig. 3

Similar content being viewed by others

References

  • Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979

    Article  CAS  Google Scholar 

  • Abdul Khalil HPS, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665

    Article  CAS  PubMed  Google Scholar 

  • Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86:1468–1475

    Article  CAS  Google Scholar 

  • Aitomäki Y, Oksman K (2014) Reinforcing efficiency of nanocellulose in polymers. React Funct Polym 85:151–156

    Article  CAS  Google Scholar 

  • Ali RM, Hamad HA, Hussein MM, Malash GF (2016) Potential of using green adsorbent of heavy metal removal from aqueous solutions: adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol Eng 91:317–332

    Article  Google Scholar 

  • Alomá I, Martín-Lara MA, Rodríguez IL, Blázquez G, Calero M (2012) Removal of nickel(II) ions from aqueous solutions by biosorption on sugarcane bagasse. J Taiwan Inst Chem Eng 43:275–281

    Article  CAS  Google Scholar 

  • Ansari F, Galland S, Johansson M, Plummer CJG, Berglund LA (2014) Cellulose nanofiber network for moisture stable, strong and ductile biocomposites and increased epoxy curing rate. Compos Part A Appl Sci Manuf 63:35–44

    Article  CAS  Google Scholar 

  • Argun ME, Dursun S, Ozdemir C, Karatas M (2007) Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics. J Hazard Mater 141:77–85

    Article  CAS  PubMed  Google Scholar 

  • Azeredo HM, Mattoso LH, Avena-Bustillos RJ, Filho GC, Munford ML, Wood D, McHugh TH (2010) Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J Food Sci 75:1–7

    Article  CAS  Google Scholar 

  • Bediako JK, Wei W, Kim S, Yun YS (2015) Removal of heavy metals from aqueous phases using chemically modified waste Lyocell fiber. J Hazard Mater 299:550–561

    Article  CAS  PubMed  Google Scholar 

  • Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sustain Energy Rev 36:91–106

    Article  CAS  Google Scholar 

  • Bezerra TL, Ragauskas AJ (2016) A review of sugarcane bagasse for second-generation bioethanol and biopower production. Biofuels Bioprod Biorefin 10:634–647

    Article  CAS  Google Scholar 

  • Bhattacharya D, Germinario LT, Winter WT (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr Polym 73:371–377

    Article  CAS  Google Scholar 

  • Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180

    Article  CAS  Google Scholar 

  • Boontima B, Noomhorm A, Puttanlek C, Uttapap D, Rungsardthong V (2014) Mechanical properties of sugarcane bagasse fiber-reinforced soy based biocomposites. J Polym Environ 23:97–106

    Article  CAS  Google Scholar 

  • Bras J, Hassan ML, Bruzesse C, Hassan EA, El-Wakil NA, Dufresne A (2010) Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind Crops Prod 32:627–633

    Article  CAS  Google Scholar 

  • Cao Y, Shibata S, Fukumoto I (2006) Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Compos Part A Appl Sci Manuf 37:423–429

    Article  CAS  Google Scholar 

  • Cao X, Dong H, Li CM (2007) New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8:899–904

    Article  CAS  PubMed  Google Scholar 

  • Carpenter AW, de Lannoy CF, Wiesner MR (2015) Cellulose nanomaterials in water treatment technologies. Environ Sci Technol 49:5277–5287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerqueira EF, Baptista CARP, Mulinari DR (2011) Mechanical behaviour of polypropylene reinforced sugarcane bagasse fibers composites. Procedia Eng 10:2046–2051

    Article  CAS  Google Scholar 

  • Chi K, Catchmark JM (2017) Enhanced dispersion and interface compatibilization of crystalline nanocellulose in polylactide by surfactant adsorption. Cellulose 24:4845–4860

    Article  CAS  Google Scholar 

  • Chimenez TA, Gehlen MH, Marabezi K, Curvelo AAS (2013) Characterization of sugarcane bagasse by autofluorescence microscopy. Cellulose 21:653–664

    Article  CAS  Google Scholar 

  • Cho M-J, Park B-D (2011) Tensile and thermal properties of nanocellulose-reinforced poly(vinyl alcohol) nanocomposites. J Ind Eng Chem 17:36–40

    Article  CAS  Google Scholar 

  • de Campos A et al (2013) Obtaining nanofibers from curauá and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose 20:1491–1500

    Article  CAS  Google Scholar 

  • de Morais Teixeira E, Corrêa AC, Manzoli A, de Lima Leite F, de Oliveira CR, Mattoso LHC (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17:595–606

    Article  CAS  Google Scholar 

  • de Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787

    Article  CAS  Google Scholar 

  • Demirbas A (2008) Heavy metal adsorption onto agro-based waste materials: a review. J Hazard Mater 157:220–229

    Article  CAS  PubMed  Google Scholar 

  • Desmet G, Takács E, Wojnárovits L, Borsa J (2011) Cellulose functionalization via high-energy irradiation-initiated grafting of glycidyl methacrylate and cyclodextrin immobilization. Radiat Phys Chem 80:1358–1362

    Article  CAS  Google Scholar 

  • Dicker MPM, Duckworth PF, Baker AB, Francois G, Hazzard MK, Weaver PM (2014) Green composites: a review of material attributes and complementary applications. Compos Part A Appl Sci Manuf 56:280–289

    Article  CAS  Google Scholar 

  • Dittenber DB, GangaRao HVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos Part A Appl Sci Manuf 43:1419–1429

    Article  Google Scholar 

  • Dos Santos VC, Tarley CR, Caetano J, Dragunski DC (2010) Assessment of chemically modified sugarcane bagasse for lead adsorption from aqueous medium. Water Sci Technol 62:457–465

    Article  CAS  PubMed  Google Scholar 

  • Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315

    Article  CAS  Google Scholar 

  • Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779

    Article  CAS  PubMed  Google Scholar 

  • Fox SC, Li B, Xu D, Edgar KJ (2011) Regioselective esterification and etherification of cellulose: a review. Biomacromolecules 12:1956–1972

    Article  CAS  PubMed  Google Scholar 

  • Garg UK, Kaur MP, Garg VK, Sud D (2007) Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. J Hazard Mater 140:60–68

    Article  CAS  PubMed  Google Scholar 

  • Garg UK, Kaur MP, Garg VK, Sud D (2008a) Removal of nickel(II) from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach. Bioresour Technol 99:1325–1331

    Article  CAS  PubMed  Google Scholar 

  • Garg U, Kaur MP, Jawa GK, Sud D, Garg VK (2008b) Removal of cadmium(II) from aqueous solutions by adsorption on agricultural waste biomass. J Hazard Mater 154:1149–1157

    Article  CAS  PubMed  Google Scholar 

  • Gatenholm P, Klemm D (2010) Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull 35:208–213

    Article  CAS  Google Scholar 

  • Gilfillan WN, Moghaddam L, Doherty WOS (2014) Preparation and characterization of composites from starch with sugarcane bagasse nanofibers. Cellulose 21:2695–2712

    Article  CAS  Google Scholar 

  • Gonçalves AR, Benar P, Costa SM, Ruzene DS, Moriya RY, Luz SM, Ferretti LP (2005) Integrated processes for use of pulps and lignins obtained from sugarcane bagasse and straw. Appl Biochem Biotechnol 123:821–826

    Article  Google Scholar 

  • Guimarães JL, Wypych F, Saul CK, Ramos LP, Satyanarayana KG (2010) Studies of the processing and characterization of corn starch and its composites with banana and sugarcane fibers from Brazil. Carbohydr Polym 80:130–138

    Article  CAS  Google Scholar 

  • Gurgel LVA, Gil LF (2009) Adsorption of Cu(II), Cd(II) and Pb(II) from aqueous single metal solutions by succinylated twice-mercerized sugarcane bagasse functionalized with triethylenetetramine. Water Res 43:4479–4488

    Article  CAS  PubMed  Google Scholar 

  • Gurgel LVA, Freitas RPd, Gil LF (2008) Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by sugarcane bagasse and mercerized sugarcane bagasse chemically modified with succinic anhydride. Carbohydr Polym 74:922–929

    Article  CAS  Google Scholar 

  • Hamad W (2006) On the development and applications of cellulosic nanofibrillar and nanocrystalline materials. Can J Chem Eng 84:513–519

    Article  CAS  Google Scholar 

  • Hassan ML, Mathew AP, Hassan EA, El-Wakil NA, Oksman K (2012) Nanofibers from bagasse and rice straw: process optimization and properties. Wood Sci Technol 46:193–205

    Article  CAS  Google Scholar 

  • Henrique MA, Flauzino Neto WP, Silvério HA, Martins DF, Gurgel LVA, da Silva Barud H, de Morais LC, Pasquini D (2015) Kinetic study of the thermal decomposition of cellulose nanocrystals with different polymorphs, cellulose I and II, extracted from different sources and using different types of acids. Ind Crops Prod 76:128–140

    Article  CAS  Google Scholar 

  • Hokkanen S, Repo E, Sillanpää M (2013) Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chem Eng J 223:40–47

    Article  CAS  Google Scholar 

  • Hokkanen S, Repo E, Suopajärvi T, Liimatainen H, Niinimaa J, Sillanpää M (2014) Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose 21:1471–1487

    Article  CAS  Google Scholar 

  • Hokkanen S, Bhatnagar A, Sillanpää M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Pang H, Liao B (2009) Removal of copper(II) ions from aqueous solution by modified bagasse. J Hazard Mater 164:1–9

    Article  CAS  PubMed  Google Scholar 

  • Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969

    Article  CAS  Google Scholar 

  • Júnior OK, Gurgel LVA, de Freitas RP, Gil LF (2009) Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse chemically modified with EDTA dianhydride (EDTAD). Carbohydr Polym 77:643–650

    Article  CAS  Google Scholar 

  • Kalia S, Boufi S, Celli A, Kango S (2013) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292:5–31

    Article  CAS  Google Scholar 

  • Kardam A, Raj KR, Srivastava S, Srivastava MM (2013) Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution. Clean Technol Environ 16:385–393

    Article  CAS  Google Scholar 

  • Kargarzadeh H, Mariano M, Huang J, Lin N, Ahmad I, Dufresne A, Thomas S (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polymer 132:368–393

    Article  CAS  Google Scholar 

  • Kargarzadeh H, Mariano M, Gopakumar D, Ahmad I, Thomas S, Dufresne A, Huang J, Lin N (2018) Advances in cellulose nanomaterials. Cellulose 25:2151–2189

    Article  CAS  Google Scholar 

  • Karnitz OJ, Gurgel LV, de Melo JC (2007) Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresour Technol 98:1291–1297

    Article  CAS  PubMed  Google Scholar 

  • Khiari R (2017) Valorization of agricultural residues for cellulose nanofibrils production and their use in nanocomposite manufacturing. Int J Polym Sci 2017:1–10

    Article  CAS  Google Scholar 

  • Khoo RZ, Chow WS (2015) Mechanical and thermal properties of poly(lactic acid)/sugarcane bagasse fiber green composites. J Thermoplast Compos Mater 30:1091–1102

    Article  CAS  Google Scholar 

  • Khoramzadeh E, Nasernejad B, Halladj R (2013) Mercury biosorption from aqueous solutions by sugarcane bagasse. J Taiwan Inst Chem Eng 44:266–269

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Linstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2:1–8

    Google Scholar 

  • Lal Homagai P, Ghimire KN, Inoue K (2010) Adsorption behavior of heavy metals onto chemically modified sugarcane bagasse. Bioresour Technol 101:2067–2069

    Article  CAS  PubMed  Google Scholar 

  • Lam NT, Chollakup R, Smitthipong W, Nimchua T, Sukyai P (2017) Characterization of cellulose nanocrystals extracted from sugarcane bagasse for potential biomedical materials. Sugar Tech 19:539–552

    Article  CAS  Google Scholar 

  • Le Bras D, Stromme M, Mihranyan A (2015) Characterization of dielectric properties of nanocellulose from wood and algae for electrical insulator applications. J Phys Chem B 119:5911–5917

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Mariatti M (2008) The effect of bagasse fibers obtained (from rind and pith component) on the properties of unsaturated polyester composites. Mater Lett 62:2253–2256

    Article  CAS  Google Scholar 

  • Li Q, Zhai J, Zhang W, Wang M, Zhou J (2007) Kinetic studies of adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solution by sawdust and modified peanut husk. J Hazard Mater 141:163–167

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wei X, Wang Q, Chen J, Chang G, Kong L, Su J, Liu Y (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90:1609–1613

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wang Y, Wei X, Wang F, Han D, Wang Q, Kong L (2014) Homogeneous isolation of nanocelluloses by controlling the shearing force and pressure in microenvironment. Carbohydr Polym 113:388–393

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Sehaqui H, Tingaut P, Wichser A, Oksman K, Mathew AP (2013) Cellulose and chitin nanomaterials for capturing silver ions (Ag+) from water via surface adsorption. Cellulose 21:449–461

    Article  CAS  Google Scholar 

  • Liu P, Borrell PF, Bozic M, Kokol V, Oksman K, Mathew AP (2015) Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag(+), Cu(2+) and Fe(3+) from industrial effluents. J Hazard Mater 294:177–185

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Oksman K, Mathew AP (2016) Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media. J Colloid Interface Sci 464:175–182

    Article  CAS  PubMed  Google Scholar 

  • Loh YR, Sujan D, Rahman ME, Das CA (2013) Sugarcane bagasse-The future composite material: a literature review. Resour Conserv Recycl 75:14–22

    Article  Google Scholar 

  • Luz SM, Del Tio J, Rocha GJM, Gonçalves AR, Del’Arco AP (2008a) Cellulose and cellulignin from sugarcane bagasse reinforced polypropylene composites: effect of acetylation on mechanical and thermal properties. Compos Part A Appl Sci Manuf 39:1362–1369

    Article  CAS  Google Scholar 

  • Luz SM, Gonçalves AR, Del’arco AP, Ferrão PMC (2008b) Composites from Brazilian natural fibers with polypropylene: mechanical and thermal properties. Compos Interface 15:841–850

    Article  CAS  Google Scholar 

  • Mahfoudhi N, Boufi S (2017) Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose 24:1171–1197

    Article  CAS  Google Scholar 

  • Malaysian DOE (2017) Malaysia marine water quality criteria and standard. https://www.doe.gov.my/portalv1/en/info-umum/piawaian-dan-kriteria-kualiti-air-marin-malaysia/301. Accessed 10 Jan 2018

  • Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86:1291–1299

    Article  CAS  Google Scholar 

  • Mandal A, Chakrabarty D (2014) Studies on the mechanical, thermal, morphological and barrier properties of nanocomposites based on poly(vinyl alcohol) and nanocellulose from sugarcane bagasse. J Ind Eng Chem 20:462–473

    Article  CAS  Google Scholar 

  • Mandal A, Chakrabarty D (2015a) Characterization of nanocellulose reinforced semi-interpenetrating polymer network of poly(vinyl alcohol) and polyacrylamide composite films. Carbohydr Polym 134:240–250

    Article  CAS  PubMed  Google Scholar 

  • Mandal A, Chakrabarty D (2015b) Synthesis and characterization of nanocellulose reinforced full-interpenetrating polymer network based on poly(vinyl alcohol) and polyacrylamide (both crosslinked) composite films. Polym Compos 35:1720–1731

    Google Scholar 

  • Martín-Lara MÁ, Rico ILR, IdlCA Vicente, García GB, de Hoces MC (2010) Modification of the sorptive characteristics of sugarcane bagasse for removing lead from aqueous solutions. Desalination 256:58–63

    Article  CAS  Google Scholar 

  • Moretti MMdS, Bocchini-Martins DA, Nunes CdCC, Villena MA, Perrone OM, da Silva R, Boscolo M, Gomes E (2014) Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis. Appl Energy 122:189–195

    Article  CAS  Google Scholar 

  • Moubarik A, Grimi N, Boussetta N (2013a) Structural and thermal characterization of Moroccan sugar cane bagasse cellulose fibers and their applications as a reinforcing agent in low density polyethylene. Compos B Eng 52:233–238

    Article  CAS  Google Scholar 

  • Moubarik A, Grimi N, Boussetta N, Pizzi A (2013b) Isolation and characterization of lignin from Moroccan sugar cane bagasse: production of lignin–phenol-formaldehyde wood adhesive. Ind Crops Prod 45:296–302

    Article  CAS  Google Scholar 

  • Mulinari DR, Voorwald HJC, Cioffi MOH, da Silva MLCP, Luz SM (2009a) Preparation and properties of HDPE/sugarcane bagasse cellulose composites obtained for thermokinetic mixer. Carbohydr Polym 75:317–321

    Article  CAS  Google Scholar 

  • Mulinari D, Voorwald H, Cioffi M, Dasilva M, Dacruz T, Saron C (2009b) Sugarcane bagasse cellulose/HDPE composites obtained by extrusion. Compos Sci Technol 69:214–219

    Article  CAS  Google Scholar 

  • nee’Nigam PS, Gupta N, Anthwal A (2009) Pre-treatment of agro-industrial residues. In: nee’Nigam PS, Pandey A (eds) Biotechnology for agro-industrial residues utilisation: utilisation of agro-residues. Springer, Dordrecht, pp 13–33

    Chapter  Google Scholar 

  • Niu X, Zheng L, Zhou J, Dang Z, Li Z (2014) Synthesis of an adsorbent from sugarcane bagasse by graft copolymerization and its utilization to remove Cd(II) ions from aqueous solution. J Taiwan Inst Chem Eng 45:2557–2564

    Article  CAS  Google Scholar 

  • O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99:6709–6724

    Article  CAS  PubMed  Google Scholar 

  • Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776–2784

    Article  CAS  Google Scholar 

  • Oliveira FBd, Bras J, Pimenta MTB, Curvelo AAdS, Belgacem MN (2016) Production of cellulose nanocrystals from sugarcane bagasse fibers and pith. Ind Crops Prod 93:48–57

    Article  CAS  Google Scholar 

  • Orlando US, Baes AU, Nishijima W, Okada M (2002) Preparation of chelating agents from sugarcane bagasse by microwave radiation as an alternative ecologically benign procedure. Green Chem 4:555–557

    Article  CAS  Google Scholar 

  • Oun AA, Rhim JW (2016) Characterization of nanocelluloses isolated from Ushar (Calotropis procera) seed fiber: effect of isolation method. Mater Lett 168:146–150

    Article  CAS  Google Scholar 

  • Palamae S, Palachum W, Chisti Y, Choorit W (2014) Retention of hemicellulose during delignification of oil palm empty fruit bunch (EFB) fiber with peracetic acid and alkaline peroxide. Biomass Bioenergy 66:240–248

    Article  CAS  Google Scholar 

  • Pehlivan E, Tran HT, Ouedraogo WK, Schmidt C, Zachmann D, Bahadir M (2013) Sugarcane bagasse treated with hydrous ferric oxide as a potential adsorbent for the removal of As(V) from aqueous solutions. Food Chem 138:133–138

    Article  CAS  PubMed  Google Scholar 

  • Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191–1206

    Article  CAS  Google Scholar 

  • Pereira FV, Gurgel LV, Gil LF (2010) Removal of Zn2+ from aqueous single metal solutions and electroplating wastewater with wood sawdust and sugarcane bagasse modified with EDTA dianhydride (EDTAD). J Hazard Mater 176:856–863

    Article  CAS  PubMed  Google Scholar 

  • Pereira PHF, Voorwald HCJ, Cioffi MOH, Mulinari DR, Luz SMD, Silva MLCP (2011) Sugarcane bagasse pulping and bleaching: thermal and chemical characterization. BioResources 6:2471–2482

    CAS  Google Scholar 

  • Peternele WS, Winkler-Hechenleitner AA, Pineda EAG (1999) Adsorption of Cd(II) and Pb(II) onto functionalized formic lignin from sugar cane bagasse. Bioresour Technol 68:95–100

    Article  CAS  Google Scholar 

  • Pranata Putra W, Kamari A, Najiah Mohd Yusoff S, Fauziah Ishak C, Mohamed A, Hashim N, Illyas Md Isa (2014) Biosorption of Cu(II), Pb(II) and Zn(II) ions from aqueous solutions using selected waste materials: adsorption and characterisation studies. J Encapsul Adsorpt Sci 4:25–35

    Article  CAS  Google Scholar 

  • Putro JN, Kurniawan A, Ismadji S, Ju Y-H (2017) Nanocellulose based biosorbents for wastewater treatment: study of isotherm, kinetic, thermodynamic and reusability. Environ Nanotechnol Monit Manage 8:134–149

    Article  Google Scholar 

  • Ramaraj B (2007) Mechanical and thermal properties of polypropylene/sugarcane Bagasse composites. J Appl Polym Sci 103:3827–3832

    Article  CAS  Google Scholar 

  • Rambabu N, Panthapulakkal S, Sain M, Dalai AK (2016) Production of nanocellulose fibers from pinecone biomass: evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films. Ind Crops Prod 83:746–754

    Article  CAS  Google Scholar 

  • Ramos SNdC, Xavier ALP, Teodoro FS, Elias MMC, Gonçalves FJ, Gil LF, de Freitas RP, Gurgel LVA (2015) Modeling mono- and multi-component adsorption of cobalt(II), copper(II), and nickel(II) metal ions from aqueous solution onto a new carboxylated sugarcane bagasse Part I: batch adsorption study. Ind Crops Prod 74:357–371

    Article  CAS  Google Scholar 

  • Ramos SNdC, Xavier ALP, Teodoro FS, Gil LF, Gurgel LVA (2016) Removal of cobalt(II), copper(II), and nickel(II) ions from aqueous solutions using phthalate-functionalized sugarcane bagasse: mono-and multicomponent adsorption in batch mode. Ind Crops Prod 79:116–130

    Article  CAS  Google Scholar 

  • Rao M, Parwate A, Bhole A (2002) Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash. Waste Manag 22:821–830

    Article  CAS  PubMed  Google Scholar 

  • Rocha GJM, Gonçalves AR, Oliveira BR, Olivares EG, Rossell CEV (2012) Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind Crops Prod 35:274–279

    Article  CAS  Google Scholar 

  • Sarker TC, Azam SMGG, El-Gawad AMA, Gaglione SA, Bonanomi G (2017) Sugarcane bagasse: a potential low-cost biosorbent for the removal of hazardous materials. Clean Technol Environ Policy 19:2343–2362

    Article  CAS  Google Scholar 

  • Scaffaro R, Botta L, Lopresti F, Maio A, Sutera F (2017) Polysaccharide nanocrystals as fillers for PLA based nanocomposites. Cellulose 24:447–478

    Article  CAS  Google Scholar 

  • Sen M, Dastidar MG (2010) Adsorption-desorption studies on Cr(VI) using non-living fungal biomass. Asian J Chem 22:2331–2338

    CAS  Google Scholar 

  • Singh R, Shukla A, Tiwari S, Srivastava M (2014) A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renew Sustain Energy Rev 32:713–728

    Article  CAS  Google Scholar 

  • Slavutsky AM, Bertuzzi MA (2014) Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydr Polym 110:53–61

    Article  CAS  PubMed  Google Scholar 

  • Sofla MRK, Brown RJ, Tsuzuki T, Rainey TJ (2016) A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Adv Nat Sci Nanosci Nanotechnol 7:1–9

    Article  CAS  Google Scholar 

  • Soliman EM, Ahmed SA, Fadl AA (2011) Removal of calcium ions from aqueous solutions by sugar cane bagasse modified with carboxylic acids using microwave-assisted solvent-free synthesis. Desalination 278:18–25

    Article  CAS  Google Scholar 

  • Sousa FW, Sousa MJ, Oliveira IR, Oliveira AG, Cavalcante RM, Fechine PBA, Neto VOS, Keukeleire Dd, Nascimento RF (2009) Evaluation of a low-cost adsorbent for removal of toxic metal ions from wastewater of an electroplating factory. J Environ Manag 90:3340–3344

    Article  CAS  Google Scholar 

  • Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review. Bioresour Technol 99:6017–6027

    Article  CAS  PubMed  Google Scholar 

  • Suopajärvi T, Liimatainen H, Karjalainen M, Upola H, Niinimäki J (2015) Lead adsorption with sulfonated wheat pulp nanocelluloses. J Water Process Eng 5:136–142

    Article  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. EXS 101:133–164

    PubMed  PubMed Central  Google Scholar 

  • Teixeira EdM, Bondancia TJ, Teodoro KBR, Corrêa AC, Marconcini JM, Mattoso LHC (2011) Sugarcane bagasse whiskers: extraction and characterizations. Ind Crops Prod 33:63–66

    Article  CAS  Google Scholar 

  • Thomas MG, Abraham E, Jyotishkumar P, Maria HJ, Pothen LA, Thomas S (2015) Nanocelluloses from jute fibers and their nanocomposites with natural rubber: preparation and characterization. Int J Biol Macromol 81:768–777

    Article  CAS  PubMed  Google Scholar 

  • Ullah I, Nadeem R, Iqbal M, Manzoor Q (2013) Biosorption of chromium onto native and immobilized sugarcane bagasse waste biomass. Ecol Eng 60:99–107

    Article  Google Scholar 

  • Vilay V, Mariatti M, Mat Taib R, Todo M (2008) Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber–reinforced unsaturated polyester composites. Compos Sci Technol 68:631–638

    Article  CAS  Google Scholar 

  • Wang L, Tong Z, Ingram LO, Cheng Q, Matthews S (2013) Green composites of poly(lactic acid) and sugarcane bagasse residues from bio-refinery processes. J Polym Environ 21:780–788

    Article  CAS  Google Scholar 

  • WHO (2004) Copper in drinking water: Background document for development of WHO guidelines for drinking water quality. http://www.who.int/water_sanitation_health/dwq/chemicals/copper.pdf. Accessed 17 Dec 2017

  • Xie K, Jing L, Zhao W, Zhang Y (2011) Adsorption removal of Cu2+ and Ni2+ from waste water using nano-cellulose hybrids containing reactive polyhedral oligomeric silsesquioxanes. J Appl Polym Sci 122:2864–2868

    Article  CAS  Google Scholar 

  • Yu JX, Wang LY, Chi RA, Zhang YF, Xu ZG, Guo J (2013a) Adsorption of Pb2+ , Cd2+ , Cu2+ , and Zn2+ from aqueous solution by modified sugarcane bagasse. Res Chem Intermediat 41:1525–1541

    Article  CAS  Google Scholar 

  • Yu JX, Wang LY, Chi RA, Zhang YF, Xu ZG, Guo J (2013b) Competitive adsorption of Pb2+ and Cd2+ on magnetic modified sugarcane bagasse prepared by two simple steps. Appl Surf Sci 268:163–170

    Article  CAS  Google Scholar 

  • Zheng Y, Zhang R, Pan Z (2016) Investigation of adsorption kinetics and isotherm of cellulase and β-glucosidase on lignocellulosic substrates. Biomass Bioenergy 91:1–9

    Article  CAS  Google Scholar 

  • Zhu HX, Cao XJ, He YC, Kong QP, He H, Wang J (2015) Removal of Cu2+ from aqueous solutions by the novel modified bagasse pulp cellulose: kinetics, isotherm and mechanism. Carbohydr Polym 129:115–126

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79:1086–1093

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by Universiti Sains Malaysia Research University Grant (Grant No. 1001/PBAHAN/8014024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. S. Chow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoo, R.Z., Chow, W.S. & Ismail, H. Sugarcane bagasse fiber and its cellulose nanocrystals for polymer reinforcement and heavy metal adsorbent: a review. Cellulose 25, 4303–4330 (2018). https://doi.org/10.1007/s10570-018-1879-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1879-z

Keywords

Navigation