Skip to main content
Log in

Nanofibrillated cellulose: surface modification and potential applications

  • Invited Review
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Interest in nanofibrillated cellulose has been increasing exponentially because of its relatively ease of preparation in high yield, high specific surface area, high strength and stiffness, low weight and biodegradability etc. This bio-based nanomaterial has been used mainly in nanocomposites due to its outstanding reinforcing potential. Solvent casting, melt mixing, in situ polymerization and electrospinning are important techniques for the fabrication of nanofibrillated cellulose-based nanocomposites. Due to hydrophilic character along with inherent tendency to form strong network held through hydrogen-bonding, nanofibrillated cellulose cannot uniformly be dispersed in most non-polar polymer matrices. Therefore, surface modification based on polymer grafting, coupling agents, acetylation and cationic modification was used in order to improve compatibility and homogeneous dispersion within polymer matrices. Nanofibrillated cellulose opens the way towards intense and promising research with expanding area of potential applications, including nanocomposite materials, paper and paperboard additive, biomedical applications and as adsorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106:2817–2824

    CAS  Google Scholar 

  2. Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A Mater 89:461–466

    CAS  Google Scholar 

  3. Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169

    CAS  Google Scholar 

  4. Kalia S, Thakur K, Celli A, Kiechel MA, Schauer CL (2013) Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: a review. J Environ Chem Eng 1:97–112

    Google Scholar 

  5. Turbak AF, Snyder FW, Sandberg KR (1983) Suspensions containing microfibrillated cellulose. U.S. patent no. 4, 3 78, 381

  6. Paralikar SA, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320:248–258

    CAS  Google Scholar 

  7. Nogi M, Handa K, Nakagaito AN, Yano H (2005) Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix. Appl Phys Lett 87:243110(1)–243110(3)

    Google Scholar 

  8. Clemons C, Sedlmair J, Illman B, Ibach R, Hirschmug C (2013) Chemically imaging the effects of the addition of nanofibrillated cellulose on the distribution of poly(acrylic acid) in poly(vinyl alcohol). Polymer. doi:10.1016/j.polymer.2013.02.016

    Google Scholar 

  9. Al-Turaif HA (2013) Relationship between tensile properties and film formation kinetics of epoxy resin reinforced with nanofibrillated cellulose. Prog Org Coat 76:477–481

    CAS  Google Scholar 

  10. Chinga-Carrascoa G, Averianova N, Gibadullin M, Petrov V, Leirseta I, Syverud K (2013) Micro-structural characterisation of homogeneous and layered MFC nano-composites. Micron 44:331–338

    Google Scholar 

  11. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. In: Sarko A (ed) Proceedings of the ninth cellulose conference, Appl Polym Symp 37. Wiley, New York, pp 815–827

    Google Scholar 

  12. Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology, and accessibility. In: Sarko A (ed) Proceedings of the ninth cellulose conference, Appl Polym Symp 37. Wiley, New York, pp 797–813

    Google Scholar 

  13. Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026

    CAS  Google Scholar 

  14. Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165

    Google Scholar 

  15. Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85

    CAS  Google Scholar 

  16. Rodionova G, Saito T, Lenes M, Eriksen O, Gregersen O, Fukuzumi H, Isogai A (2011) Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and eucalyptus pulps. Cellulose 19:705–711

    Google Scholar 

  17. Spence KL, Venditti RA, Rojas OJ, Pawlak JJ, Hubbe MA (2011) Water vapor barrier properties of coated and filled microfibrillated cellulose composite films. Bioresources 6:4370–4388

    CAS  Google Scholar 

  18. Aulin C, Gallstedt M, Lindstrom T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574

    CAS  Google Scholar 

  19. Czaja WK, Young DJ, Kawecki M, Brown RMJR (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12

    CAS  Google Scholar 

  20. Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2009) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585

    Google Scholar 

  21. Sukjoon Y, Jeffery SH (2010) Composites, enzyme-assisted preparation of fibrillated cellulose fibers and its effect on physical and mechanical properties of paper sheet composites. Ind Eng Chem Res 49:2161–2168

    Google Scholar 

  22. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    CAS  Google Scholar 

  23. Abdul Khalil HPS, Bhat AH, IreanaYusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979

    CAS  Google Scholar 

  24. Donaldson L (2007) Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci Technol 41:443–460

    CAS  Google Scholar 

  25. Marques G, Rencoret J, Gutierrez A, del Rio JC (2010) Evaluation of the chemical composition of different non-woody plant fibres used for pulp and paper manufacturing. Open Agric J 4:93–101

    CAS  Google Scholar 

  26. Alila S, Besbes I, Vilar MR, Mutje P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crop Prod 41:250–259

    CAS  Google Scholar 

  27. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65

    CAS  Google Scholar 

  28. Habibi Y, Dufresne A (2008) Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules 9:1974–1980

    CAS  Google Scholar 

  29. de Rodriguez NLG, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270

    Google Scholar 

  30. Cao XD, Dong H, Li CM (2007) New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8:899–904

    CAS  Google Scholar 

  31. Helbert W, Cavaille JY, Dufresne A (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: processing and mechanical behavior. Polym Compos 17:604–611

    CAS  Google Scholar 

  32. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664–1671

    CAS  Google Scholar 

  33. Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch–cellulose microfibril composites. J Appl Polym Sci 76:2080–2092

    CAS  Google Scholar 

  34. Habibi Y, Vignon MR (2008) Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp. Cellulose 15:177–185

    CAS  Google Scholar 

  35. Zuluaga R, Putaux JL, Restrepo A, Mondragon I, Ganan P (2007) Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose 14:585–592

    CAS  Google Scholar 

  36. Bhattacharya D, Germinario LT, Winter WT (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr Polym 73:371–377

    CAS  Google Scholar 

  37. Bendahou A, Kaddami H, Dufresne A (2010) Investigation on the effect of cellulosic nanoparticles morphology on the properties of natural rubber based nanocomposites. Eur Polym J 46:609–620

    CAS  Google Scholar 

  38. Muller RH, Jacobs C, Kayser O (2001) Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv Drug Deliv Rev 471:3–19

    Google Scholar 

  39. Shamlou PA, Siddiqi SF, Titchener-Hooker NJ (1995) A physical model of high pressure disruption of baker's yeast cells. Chem Eng Sci 50:1383–1391

    CAS  Google Scholar 

  40. Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber reinforced composites. J Reinf Plast Compos 24:1259–1268

    CAS  Google Scholar 

  41. Park JI, Saffari PA, Kumar S, Gunther A, Kumacheva E (2010) Microfluidic synthesis of polymer and inorganic particulate materials. Annu Rev Mater Res 40:415–443

    CAS  Google Scholar 

  42. Aulin C, Netrval J, Wagberg L, Lindstrom T (2010) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6:3298–3305

    CAS  Google Scholar 

  43. Ahola S, Salmi J, Johansson LS, Laine J, Osterberg M (2008) Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules 9:1273–1282

    CAS  Google Scholar 

  44. Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79:1086–1093

    CAS  Google Scholar 

  45. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278

    CAS  Google Scholar 

  46. Abe K, Nakatsubo F, Yano H (2009) High-strength nanocomposite based on fibrillated chemi-thermomechanical pulp. Compos Sci Technol 69:2434–2437

    CAS  Google Scholar 

  47. Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16:1017–1023

    CAS  Google Scholar 

  48. Flint EB, Suslick KS (1991) The temperature of cavitation. Science 253:1397–1399

    CAS  Google Scholar 

  49. Cheng Q, Wang S, Han Q (2010) Novel process for isolating fibrils from cellulose fibers by high-intensity ultrasonication. II. Fibril characterization. J Appl Polym Sci 115:2756–2762

    CAS  Google Scholar 

  50. Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication. Part 1. Process optimization. J Appl Polym Sci 113:1270–1275

    CAS  Google Scholar 

  51. Chen W, Yu H, Liu Y, Chen P, Zhang M, Yunfei H (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811

    CAS  Google Scholar 

  52. Johnson R, Zink-Sharp A, Renneckar S, Glasser W (2009) A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose 16:227–238

    CAS  Google Scholar 

  53. Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442

    CAS  Google Scholar 

  54. Tonoli GHD, Teixeira EM, Correa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, Mattoso LHC (2012) Cellulose micronanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88

    CAS  Google Scholar 

  55. Mishra SP, Manent AS, Chabot B, Daneault C (2012) Production of nanocellulose from native cellulose—various options utilizing ultrasound. Bioresources 7:422–436

    CAS  Google Scholar 

  56. Dong XM, Revol JF, Gray D (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32

    CAS  Google Scholar 

  57. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    CAS  Google Scholar 

  58. Madsen B (2004) Properties of plant fibre yarn polymer composites an experimental study. Technical University of Denmark; report BYG·DTU R-082

  59. Dufresne A, Cavaille JY, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194

    CAS  Google Scholar 

  60. Leitner J, Hinterstoisser B, Wastyn M, Keckes J, Gindl W (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14:419–425

    CAS  Google Scholar 

  61. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    CAS  Google Scholar 

  62. Henriksson M, Henriksson G, Berglund LA, Lindstrom T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441

    CAS  Google Scholar 

  63. Shibata I, Isogai A (2003) Depolymerization of cellouronic acid during TEMPO-mediated oxidation. Cellulose 10:151–158

    CAS  Google Scholar 

  64. Wang B, Sain M (2007) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67:2521–2527

    CAS  Google Scholar 

  65. Besbes I, ReiVilar M, Boufi S (2011) Nanofibrillated cellulose from alfa, eucalyptus and pine fibres: preparation, characteristics and reinforcing potential. Carbohydr Polym 86:1198–1206

    CAS  Google Scholar 

  66. Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983

    CAS  Google Scholar 

  67. Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47:291–294

    CAS  Google Scholar 

  68. Eriksen O, Syverud K, Gregersen O (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nord Pulp Pap Res 23:299–304

    CAS  Google Scholar 

  69. Paakko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499

    CAS  Google Scholar 

  70. Hassan ML, Mathew AP, Hassan EA, El-Wakil NA, Oksman K (2012) Nanofibers from bagasse and rice straw: process optimization and properties. Wood Sci Technol 46:193–205

    CAS  Google Scholar 

  71. Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111

    CAS  Google Scholar 

  72. Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulp. Ind Eng Chem Res 48:11211–11219

    Google Scholar 

  73. Andresen M, Johansson L, Tanem B, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677

    CAS  Google Scholar 

  74. Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A Mater 81:1109–1112

    CAS  Google Scholar 

  75. Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nanoorder-unit web-like network structure. Appl Phys A Mater 80:155–159

    CAS  Google Scholar 

  76. d’A Clark J (1954) Properties and treatment of pulp for paper. In: Ott E, Spurlin EM, Grafflin MW (eds) Cellulose and cellulose derivatives. Interscience, New York, pp 621–671

    Google Scholar 

  77. Hamad WY (1997) Some microrheological aspects of wood-pulp fibres subjected to fatigue loading. Cellulose 4:51–56

    CAS  Google Scholar 

  78. Jiang F, Hsieh Y (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40

    CAS  Google Scholar 

  79. Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996

    CAS  Google Scholar 

  80. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    CAS  Google Scholar 

  81. Isogai T, Saito T, Isogai A (2011) Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation. Cellulose 18:421–431

    CAS  Google Scholar 

  82. Iwamoto S, Kai W, Isogai T, Saito T, Isogai A, Iwata T (2010) Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils. Polym Degrad Stab 95:1394–1398

    CAS  Google Scholar 

  83. Bragd PL, van Bekkum H, Besemer AC (2004) TEMPO-mediated oxidation of polysaccharides: survey of methods and applications: catalytic conversion of renewables. Top Catal 27:49–66

    CAS  Google Scholar 

  84. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    CAS  Google Scholar 

  85. Benhamou K, Dufresne A, Magnin A, Mortha G, Kaddami H (2013) Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Carbohydr Polym. doi:10.1016/j.carbpol.2013.08.032

    Google Scholar 

  86. Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13:842–849

    CAS  Google Scholar 

  87. Tejado A, Nur Alam M, Antal M, Yang H, van de Ven TGM (2012) Energy requirements for the disintegration of cellulose fibres into cellulose nanofibres. Cellulose 19:831–842

    CAS  Google Scholar 

  88. Hayashi N, Kondo T, Ishihara M (2005) Enzymatically produced nano-ordered short elements containing cellulose I crystalline domains. Carbohydr Polym 61:191–197

    CAS  Google Scholar 

  89. Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    CAS  Google Scholar 

  90. Janardhnan S, Sain M (2006) Isolation of cellulose microfibrils—an enzymatic approach. Bioresources 1:176–188

    Google Scholar 

  91. Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13:1339–1344

    CAS  Google Scholar 

  92. Isto H, Kaj B, Marianna V, Taina K, Pertti N (2012) Process for producing microfibrillated cellulose. PCT/IB10/53044

  93. Kopcke V (2008) Improvement on cellulose accessibility and reactivity of different wood pulps. Licentiate thesis, Royal Institute of Technology

  94. Cristobal C, Encarnacion R, Mercedes B, Paloma M, Jose MN, Eulogio C (2008) Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel 87:692–700

    Google Scholar 

  95. Deep B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, de Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102:1988–1997

    Google Scholar 

  96. Cherian BM, Leao AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725

    CAS  Google Scholar 

  97. Chaker A, Alila S, Mutjé P, Vilar MR, Boufi S (2013) Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps. Cellulose. doi:1007/s10570-013-0036-y

  98. Kalia S, Dufresne A, Cherian BM, Kaith BS, Av’erous L, Njuguna J, Nassiopoulos E (2011) Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci. doi:10.1155/2011/837875 (Article ID 837875)

    Google Scholar 

  99. Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci. doi:10.1016/j.progpolymsci.2013.05.014

    Google Scholar 

  100. Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalisation of cellulose nanocrystals. Soft Matter 4:2238–2244

    CAS  Google Scholar 

  101. Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 9999:1–16

    Google Scholar 

  102. Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerisation (SI-ATRP). Langmuir 25:8280–8286

    CAS  Google Scholar 

  103. Lonnberg H, Fogelstrom L, Berglund MASASL, Malmstrom E, Hult A (2008) Surface grafting of microfibrillated cellulose with poly(e-caprolactone)—synthesis and characterization. Eur Polym J 44:2991–2997

    Google Scholar 

  104. Thompson TT, Bastarrachea MIL, Vega MJA (2005) Characterization of henequen cellulose microfibers treated with an epoxide and grafted with poly(acrylic acid). Carbohydr Polym 62:67–73

    Google Scholar 

  105. Xiao M, Li S, Chanklin W, Zheng A, Xiao H (2011) Surface initiated atom transfer radical polymerization of butyl acrylate on cellulose microfibrils. Carbohydr Polym 83:512–519

    CAS  Google Scholar 

  106. Li S, Xiao M, Zheng A, Xiao H (2011) Cellulose microfibrils grafted with PBA via surface initiated atom transfer radical polymerization for biocomposite reinforcement. Biomacromolecules 12:3305–3312

    CAS  Google Scholar 

  107. Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45

    CAS  Google Scholar 

  108. Mishra AR, Srinivasan R, Gupta P (2003) Psyllium-g-polyacrylonitrile: synthesis and characterization. Colloid Polym Sci 281:187–189

    CAS  Google Scholar 

  109. Littunen K, Hippi U, Johansson LS, Osterberg M, Tammelinc T, Laine J, Seppala J (2011) Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers. Carbohydr Polym 84:1039–1047

    CAS  Google Scholar 

  110. Lonnberg H, Larsson K, Lindstrom T, Hult A, Malmstrom E (2011) Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites—influence of the graft length on the mechanical properties. ACS Appl Mater Interfaces 3:1426–1433

    Google Scholar 

  111. Yi J, Xu QX, Zhang XF, Zhang HL (2008) Chiral-nematic self-ordering of rodlike cellulose nanocrystals grafted with poly(styrene) in both thermotropic and lyotropic states. Polymer 49:4406–4412

    CAS  Google Scholar 

  112. Xu Q, Yi J, Zhang X, Zhang H (2008) A novel amphotropic polymer based on cellulose nanocrystals grafted with azo polymers. Eur Polym J 44:2830–2837

    CAS  Google Scholar 

  113. Zoppe JO, Habibi Y, Rojas OJ, Venditti RA, Johansson LS, Efimenko K, Sterberg MO, Laine J (2010) Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromolecules 2010:2683–2691

    Google Scholar 

  114. Araki J, Wada M, Kuga S (2001) Steric stabilisation of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27

    CAS  Google Scholar 

  115. Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296

    CAS  Google Scholar 

  116. Monte SJ, Kenrich Petrochemicals, Inc. (1995) Ken-React reference manual—titanate, zirconate and aluminate coupling agents, 3rd rev. edn. Kenrich Petrochemicals, Bayonne

  117. Gousse C, Chanzy H, Cerrada ML, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45:1569–1575

    CAS  Google Scholar 

  118. Lu J, Drzal LT (2010) Microfibrillated cellulose/cellulose acetate composites: effect of surface treatment. J Polym Sci Polym Phys 48:153–161

    CAS  Google Scholar 

  119. Sassi JF, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2:111–127

    CAS  Google Scholar 

  120. Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11:454–464

    CAS  Google Scholar 

  121. Yakubu A, Umar TM, Mohammed SSD (2011) Chemical modification of microcrystalline cellulose: improvement of barrier surface properties to enhance surface Interactions with some synthetic polymers for biodegradable packaging material processing and applications in textile, food and pharmaceutical industry. Adv Appl Sci Res 2:532–540

    CAS  Google Scholar 

  122. Tingaut P, Eyholzer C, Zimmermann T (2011) Functional polymer nanocomposite materials from microfibrillated cellulose. In: Hashim A (ed) Advances in nanocomposite technology. Intech, Croatia, pp 319–334

    Google Scholar 

  123. Rodionova G, Lenes O, Eriksen O, Gregersen (2011) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18:127–134

    CAS  Google Scholar 

  124. Hill CAS, Cetin NS, Ozmen N (2000) Potential catalysts for the acetylation of wood. Holzforschung 54:269–272

    CAS  Google Scholar 

  125. Jonoobi M, Harun J, Mathew AP, Hussein MZB, Oksman K (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17:299–307

    CAS  Google Scholar 

  126. Karppinen A, Vesterinen AH, Saarinen T, Pietikainen P, Seppala J (2011) Effect of cationic polymethacrylates on the rheology and flocculation of microfibrillated cellulose. Cellulose 18:1381–1390

    CAS  Google Scholar 

  127. Syverud K, Xhanari K, Chinga-Carrasco G, Yu Y, Stenius P (2011) Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy. J Nanoparticle Res 13:773–782

    CAS  Google Scholar 

  128. Nakagaito AN, Yano H (2008) Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers. Cellulose 15:323–331

    CAS  Google Scholar 

  129. Pahimanolis N, Hippi U, Johansson LS, Saarinen T, Houbenov N, Ruokolainen J, Seppala J (2011) Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media. Cellulose 18:1201–1212

    CAS  Google Scholar 

  130. Lasseuguette E (2008) Grafting onto microfibrils of native cellulose. Cellulose 15:571–580

    CAS  Google Scholar 

  131. Ramazanov MA, Ali-Zade RA, Agakishieva PB (2010) Structure and magnetic properties of nanocomposites on the basis PE + Fe3O4 и PVDF + Fe3O4. Dig J Nanomater Biostructures 5:727–733

    Google Scholar 

  132. Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367

    CAS  Google Scholar 

  133. Luong ND, Korhonen JT, Soininen AJ, Ruokolainen J, Johansson LS, Seppala J (2013) Processable polyaniline suspensions through in situ polymerization onto nanocellulose. Eur Polym J 49:335–344

    CAS  Google Scholar 

  134. Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 49:950–956

    CAS  Google Scholar 

  135. Littunen K, Hippi U, Saarinen T, Seppälä J (2013) Network formation of nanofibrillated cellulose in solution blended poly(methyl methacrylate) composites. Carbohydr Polym 91:183–190

    CAS  Google Scholar 

  136. Liu A, Berglund LA (2013) Fire-retardant and ductile clay nanopaper biocomposites based on montmorillonite in matrix of cellulose nanofibers and carboxymethyl cellulose. Eur Polym J 49:940–949

    CAS  Google Scholar 

  137. Winuprasith T, Suphantharika M (2013) Microfibrillated cellulose from mangosteen (Garcinia mangostana L.) rind: preparation, characterization, and evaluation as an emulsion stabilizer. Food Hydrocoll 32:383–394

    CAS  Google Scholar 

  138. Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    CAS  Google Scholar 

  139. Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103–2106

    CAS  Google Scholar 

  140. Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187–1192

    CAS  Google Scholar 

  141. Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747

    CAS  Google Scholar 

  142. Takagi H, Asano A (2008) Effects of processing conditions on flexural properties of cellulose nanofiber reinforced “green” composites. Compos Part A Appl Sci 39:685–689

    Google Scholar 

  143. Gong G, Pyo J, Mathew AP, Oksman K (2011) Tensile behavior, morphology and viscoelastic analysis of cellulose nanofiber-reinforced (CNF) polyvinyl acetate (PVAc). Compos Part A Appl Sci 42:1275–1282

    Google Scholar 

  144. Bruce DM, Hobson RN, Farrent JW, Hepworth DG (2005) High-performance composites from low-cost plant primary cell walls. Compos Part A Appl Sci 36:1486–1493

    Google Scholar 

  145. Seydibeyoglu MO, Oksman K (2008) Novel nanocomposites based on polyurethane and microfibrillated cellulose. Compos Sci Technol 68:908–914

    Google Scholar 

  146. Plummer CJG, Choo CKC, Boissard CIR, Bourban P-E, Månson J-AE (2013) Morphological investigation of polylactide/microfibrillated cellulose composites. Colloid Polym Sci. doi:10.1007/s00396-013-2968-z

    Google Scholar 

  147. Borges AC, Eyholzer C, Duc F, Bourban P, Tingaut P, Zimmermann T, Pioletti DP, Månson JE (2011) Nanofibrillated cellulose composite hydrogel for the replacement of the nucleus pulposus. Acta Biomater 7:3412–3421

    CAS  Google Scholar 

  148. Luong ND, Korhonen JT, Soininen AJ, Ruokolainen J, Johansson L, Seppälä J (2013) Processable polyaniline suspensions through in situ polymerization onto nanocellulose. Eur Polym J49:335–344

    Google Scholar 

  149. Nystrom G, Mihranyan A, Razaq A, Lindstrom T, Nyholm L, Strømme M (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B114:4178–4182

    Google Scholar 

  150. Fortunato G, Zimmermann T, Lubben J, Bordeanu N, Hufenus R (2012) Reinforcement of polymeric submicrometer sized fibers by microfibrillated cellulose. Macromol Mater Eng 297:576–584

    CAS  Google Scholar 

  151. Medeiros ES, Mattoso LHC, Ito EN, Gregorski KS, Robertson GH, Offeman RD, Wood DF, Orts WJ, Imam SH (2008) Electrospun nanofibers of poly(vinyl alcohol) reinforced with cellulose nanofibrils. J Biobased Mater Bioenergy 2:1–12

    Google Scholar 

  152. Gopalakrishna H (2012) Electrospinning composite nanofibers of cellulose. J Purdue Undergrad Res 2:84. doi:10.5703/1288284314693

    Google Scholar 

  153. Xiang C, Frey MW (2008) Nanocomposite fibers electrospun from biodegradable polymers. The 235th ACS National Meeting, New Orleans, LA, April 6–10, 2008

  154. Valo H, Kovalainen M, Laaksonen P, Hakkinen M, Auriola S, Peltonen L, Linder M, Jarvinen K, Hirvonen J, Laaksonen T (2011) Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices-enhanced stability and release. J Control Release 156:390–397

    CAS  Google Scholar 

  155. Eyholzer C, Borges de Couraca A, Duc F, Bourban PE, Tingaut P, Zimmermann T, Manson JAE, Oksman K (2011) Biocomposite hydrogels with carboxymethylated, nanofibrillated cellulose powder for replacement of the nucleus pulposus. Biomacromolecules 12:1419–1427

    CAS  Google Scholar 

  156. Mathew AP, Oksman K, Pierron D, Harmand MF (2012) Fibrous cellulose nanocomposite scaffolds prepared by partial dissolution for potential use as ligament or tendon substitutes. Carbohydr Polym 87:2291–2298

    CAS  Google Scholar 

  157. Mathew AP, Oksman K, Pierron D, Harmad M-F (2012) Crosslinked fibrous composites based on cellulose nanofibers and collagen with in situ pH induced fibrillation. Cellulose 19:139–150

    CAS  Google Scholar 

  158. Shimotoyodome A, Suzuki J, Kumamoto Y, Hase T, Isogai A (2011) Regulation of postprandial blood metabolic variables by TEMPO-oxidized cellulose nanofibers. Biomacromolecules 12:3812–8

    CAS  Google Scholar 

  159. Cherian BM, Leao AL, Ferreira de Souza S, Costa LMM, Molina de Olyveira G, Kottaisamy M, Nagarajan ER, Thomas S (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym 86:1790–1798

    CAS  Google Scholar 

  160. Sang Y, Li F, Gu Q, Liang C, Chen J (2008) Heavy metal-contaminated ground water treatment by novel nanofiber membrane. Desalination 223:349–360

    CAS  Google Scholar 

  161. Belhalfaoui B, Aziz A, Elandaloussi EH, Oualia MS, De Menorval LC (2009) Succinate-bonded cellulose: a regenerable and powerful sorbent for cadmium removal from spiked high-hardness groundwater. J Hazard Mater 169:831–837

    CAS  Google Scholar 

  162. Nomanbhay SM, Palanisamy K (2005) Removal of heavy metal from industrial waste water using chitosan coated oil palm shell charcoal. Electron J Biotechnol 8:43–53

    CAS  Google Scholar 

  163. Ricordel S, Taha S, Cisse I, Dorange G (2001) Heavy metals removal by adsorption onto peanut husks carbon: characterization, kinetic study and modeling. Sep Purif Technol 24:389–401

    CAS  Google Scholar 

  164. Stephen M, Catherine N, Brenda M, Andrew K, Leslie P, Corrinec G (2011) Oxolane-2,5-dione modified electrospun cellulose nanofibers for heavy metals adsorption. J Hazard Mater 192:922–927

    CAS  Google Scholar 

  165. Gebald C, Wurzbacher JA, Tingaut P, Zimmermann T, Steinfeld A (2011) Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ Sci Technol 45:9101–9108

    CAS  Google Scholar 

  166. Maatar W, Alila S, Boufi S (2013) Cellulose based organogel as an adsorbent for dissolved organic compounds. Ind Crop Prod 49:33–42

    CAS  Google Scholar 

  167. Gonzalez I, Boufi S, Pe’lach MA, Alcala’ M, Vilaseca F, Mutje’ P (2012) Nanofibrillated cellulose as paper additive in eucalyptus pulps. Bioresources 7:5167–5180

    CAS  Google Scholar 

  168. Hii C, Gregersen OW, Chinga-Carrasco G, Eriksen O (2012) The effect of MFC on the pressability and paper properties of TMP and GCC based sheets. Nordic Pulp Pap Res J 27:388–396

    CAS  Google Scholar 

  169. Taipale T, Osterberg M, Nykanen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020

    CAS  Google Scholar 

  170. Gonzalez I, Vilaseca F, Alcalá M, Pèlach MA, Boufi S, Mutjé P (2013) Effect of the combination of biobeating and NFC on the physico-mechanical properties of paper. Cellulose 20:1425–1435

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susheel Kalia or Sami Boufi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalia, S., Boufi, S., Celli, A. et al. Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292, 5–31 (2014). https://doi.org/10.1007/s00396-013-3112-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-3112-9

Keywords

Navigation