Skip to main content
Log in

Influence of Diverse Urban Pressures on Water Characteristics in a Small Eastern Mediterranean Watershed

  • Original Article
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

This work focuses on the characterization of a typical coastal karst watershed by addressing its physico-chemical parameters. The concentrations of the main ions clearly indicate the dominance of Ca2+ and HCO3 with a carbonate weathering rate equivalent to 230t/Km2/year; that is a typical weathering of karst watersheds. The spatio-temporal variability of dissolved organic matter (DOM) is also assessed in the watershed. Many samples were collected under different hydrological conditions from three representative sites. The evolution of OM composition along an urbanization gradient from upstream to downstream Kadisha watershed reveals the very strong impact of urban discharges on the receiving waters. Substantial differences in DOC results are highlighted in relation to the urban or natural origin of the DOM. Upstream OM flux is quantified and compared to downstream OM flux showing that, during the low flow period, the downstream flux is 29 times higher than the upstream. Also, a large fraction of non-humic substances, including hydrophilic organic matter HPI, is detected in the downstream section impacted by urban discharges. The higher values of SUVA noticed for DOM at upstream compared to downstream, reflects the low aromaticity and non-humic character of DOM in downstream. These outcomes show the impact of the Tripoli urban discharges on the quality and quantity of OM in the receiving waters downstream of the Kadisha catchment. This is typical at low water period when the dilution factor of urban discharges in the receiving waters is the least.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a.
Fig. 5a.
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information file).

References

  • Aiken GR, McKnight DM, Thorn KA, Thurman EM (1992) Isolation of hydrophilic organic acids from water using nonionic macroporous resins. Org Geochem 18(4):567–573. https://doi.org/10.1016/0146-6380(92)90119-I

    Article  Google Scholar 

  • APHA-AWWA-WEF (2005) Standard Methods for the Examination of Water and Wastewater, 21st edn. American Public Health Association, Washington DC

    Google Scholar 

  • Assaker A (2016) Hydrologie et biogéochimie du bassin versant du fleuve Ibrahim : un observatoire du fonctionnement de la zone critique au Liban. (Hydrology and biogeochemistry of the Ibrahim River Basin: an observatory of the critical zone functioning in Lebanon). Ph.D. Thesis, University of Toulouse. INP Toulouse. 1–278

  • Awad M, Darwich TK (2009a) Evaluating sea water quality in the coastal zone of North Lebanon using Telemac-2 DTM. Leban Sci J 10(1):35

    Google Scholar 

  • Awad MM, Darwich T (2009b) Evaluating sea water quality in the coastalz one of north lebanon uSing. Leban Sci J 10(1):35–43

    Google Scholar 

  • Azzi V, Kazpard V, Lartiges B, Kobeissi A, Kanso A, El Samrani AG (2017) Trace metals in phosphate fertilizers used in eastern mediterranean countries. Clean Soil Air Water. https://doi.org/10.1002/clen.201500988

    Article  Google Scholar 

  • Barlow PM, Reichard EG (2010) L’intrusion d’eau salée dans les régions côtières d’Amérique du Nord. Hydrogeol J 18(1):247–260. https://doi.org/10.1007/s10040-009-0514-3

    Article  Google Scholar 

  • Bonacci O, Ljubenkov I, Roje-Bonacci T (2006) Karst flash floods: An example from the Dinaric karst (Croatia). Nat Hazards Earth Syst Sci 6(2):195–203. https://doi.org/10.5194/nhess-6-195-2006

    Article  Google Scholar 

  • Brinkmann R, Parise M (2012) Karst environments: problems, management, human impacts, and sustainability an introduction to the special issue. J Cave Karst Stud 74(2):135–136. https://doi.org/10.4311/2011JCKS0253

    Article  Google Scholar 

  • Buffle J (1988) Complexation reactions in aquatic systems: an analytical approach. Ellis Horwood, New York

    Google Scholar 

  • Buffle J, Altmann RS, Filella M, Tessier A (1990) Complexation by natural heterogeneous compounds: site occupation distribution functions, a normalized description of metal complexation. Geochim Cosmochim Acta 54(6):1535–1553. https://doi.org/10.1016/0016-7037(90)90389-3

    Article  Google Scholar 

  • Butturini A, Guarch A, Romaní AM, Freixa A, Amalfitano S, Fazi S, Ejarque E (2016) Hydrological conditions control in situ DOM retention and release along a Mediterranean river. Water Res 99:33–45. https://doi.org/10.1016/j.watres.2016.04.036

    Article  Google Scholar 

  • Buzier R, Tusseau-Vuillemin MH, Meriadec CM, Rousselot O, Mouchel JM (2006) Trace metal speciation and fluxes within a major French wastewater treatment plant: Impact of the successive treatments stages. Chemosphere 65(11):2419–2426. https://doi.org/10.1016/j.chemosphere.2006.04.059

    Article  Google Scholar 

  • Carrasco F, Sánchez D, Vadillo I, Andreo B, Martínez C, Fernández L (2008) Application of the European water framework directive in a Western Mediterranean basin (Málaga, Spain). Environ Geol 54(3):575–585. https://doi.org/10.1007/s00254-007-0852-1

    Article  Google Scholar 

  • Catalán N, Obrador B, Alomar C, Pretus JL (2013) Seasonality and landscape factors drive dissolved organic matter properties in Mediterranean ephemeral washes. Biogeochemistry 112(1–3):261–274. https://doi.org/10.1007/s10533-012-9723-2

    Article  Google Scholar 

  • Chávez-Mejía AC, Navarro-González I, Magaña-López R, Uscanga-Roldán D, Zaragoza-Sánchez PI, Jiménez-Cisneros BE (2019) Presence and natural treatment of organic micropollutants and their risks after 100 years of incidental water reuse in agricultural irrigation. Water (Switzerland). https://doi.org/10.3390/w11102148

    Article  Google Scholar 

  • Cheshire MV, Russell JD, Fraser AR, Bracewell JM, Robertsons GW, Benzing-Purdie LM, Goodman BA (1992) Nature of soil carbohydrate and its association with soil humic substances. J Soil Sci 43(2):359–373

    Article  Google Scholar 

  • Chln Y, Alken G, Loughlins EO (1994) Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ Sci Technol 28(11):1853–1858. https://doi.org/10.1021/es00060a015

    Article  Google Scholar 

  • Constantino C, Comber SDW, Scrimshaw MD (2017) The effect of wastewater effluent derived ligands on copper and zinc complexation. Environ Sci Pollut Res 24(9):8363–8374. https://doi.org/10.1007/s11356-016-8332-3

    Article  Google Scholar 

  • Croué JP (2004) Isolation of humic and non-humic NOM fractions: structural characterizations. Environ Monit Assess 92:193–207

    Article  Google Scholar 

  • Dotson A, Westerhoff P, Krasner SW (2009) Nitrogen enriched dissolved organic matter (DOM) isolates and their affinity to form emerging disinfection by-products. Water Sci Technol 60(1):135–143. https://doi.org/10.2166/wst.2009.333

    Article  Google Scholar 

  • Duan S, Amon RMW, Brinkmeyer RL (2014) Tracing sources of organic matter in adjacent urban streams having different degrees of channel modification. Sci Total Environ 485–486(1):252–262. https://doi.org/10.1016/j.scitotenv.2014.03.066

    Article  Google Scholar 

  • Edzwald JK (1993) Coagulation in drinking water treatment: particles, organics and coagulants. Water Sci Technol 27:21–35

    Article  Google Scholar 

  • El Samrani AG, Lartiges BS, Montargès-Pelletier E, Kazpard V, Barrès O, Ghanbaja J (2004) Clarification of municipal sewage with ferric chloride: the nature of coagulant species. Water Res 38(3):756–768. https://doi.org/10.1016/j.watres.2003.10.002

    Article  Google Scholar 

  • Farré MJ, Day S, Neale PA, Stalter D, Tang JYM, Escher BI (2013) Bioanalytical and chemical assessment of the disinfection by-product formation potential: role of organic matter. Water Res 47(14):5409–5421. https://doi.org/10.1016/j.watres.2013.06.017

    Article  Google Scholar 

  • Gogu RC, Dassargues A (2000) Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environ Geology 39(6):549–559. https://doi.org/10.1007/s002540050466

    Article  Google Scholar 

  • Goldman JH, Rounds SA, Keith MK, Sobieszczyk S (2014) Investigating organic matter in Fanno Creek, Oregon, Part 3 of 3: identifying and quantifying sources of organic matter to an urban stream. J Hydrol 519:3028–3041. https://doi.org/10.1016/j.jhydrol.2014.07.033

    Article  Google Scholar 

  • Goudie A (2018) The human impact on the natural environment. Wiley, Hoboken

    Google Scholar 

  • Hanna N, Lartiges B, Kazpard V, Maatouk E, Amacha N, Sassine S, El A, Hanna N, Lartiges B, Kazpard V, Maatouk E, Amacha N (2019) Hydrogeochemical processes in a small eastern mediterranean karst watershed ( Nahr Ibrahim, Lebanon ) To cite this version : HAL Id : hal-02265626 Hydrogeochemical processes in a small eastern mediterranean. Aquatic Geochem 24(5):325–344

    Google Scholar 

  • Hoikkala L, Tammert H, Lignell R, Eronen-Rasimus E, Spilling K, Kisand V (2016) Autochthonous dissolved organic matter drives bacterial community composition during a bloom of filamentous cyanobacteria. Front Mar Sci. https://doi.org/10.3389/fmars.2016.00111

    Article  Google Scholar 

  • Hosen JD, McDonough OT, Febria CM, Palmer MA (2014) Dissolved organic matter quality and bioavailability changes across an urbanization gradient in headwater streams. Environ Sci Technol 48(14):7817–7824. https://doi.org/10.1021/es501422z

    Article  Google Scholar 

  • Inamdar S, Singh S, Dutta S, Levia D, Mitchell M, Scott D, Bais H, Mchale P (2011) Fluorescence characteristics and sources of dissolved organic matter for stream water during storm events in a forested mid - Atlantic watershed. J Geophys Res Biogeosci. https://doi.org/10.1029/2011JG001735

    Article  Google Scholar 

  • Jabali Y, Millet M, El-Hoz M (2020) Spatio-temporal distribution and ecological risk assessment of pesticides in the water resources of Abou Ali River, Northern Lebanon. Environ Sci Pollut Res 27(15):17997–18012. https://doi.org/10.1007/s11356-020-08089-5

    Article  Google Scholar 

  • Kabbara N, Benkhelil J, Awad M, Barale V (2008) Monitoring water quality in the coastal area of Tripoli (Lebanon) using high-resolution satellite data. ISPRS J Photogramm Remote Sens 63(5):488–495. https://doi.org/10.1016/j.isprsjprs.2008.01.004

    Article  Google Scholar 

  • Kalscheur KN, Penskar RR, Daley AD, Pechauer SM, Kelly JJ, Peterson CG, Gray KA (2012) Effects of anthropogenic inputs on the organic quality of urbanized streams. Water Res 46(8):2515–2524. https://doi.org/10.1016/j.watres.2012.01.043

    Article  Google Scholar 

  • Kazpard V (2008) Tracing sources of pollution in groundwater using hydrochemical and isotopic methods: beirut and its suburbs. J Environ Hydrol. 21:537

    Google Scholar 

  • Khatib RE, Lartiges BS, Samrani AE, Faure P, Houhou J, Ghanbaja J (2012) Speciation of organic matter and heavy metals in urban wastewaters from an emerging country. Water Air Soil Pollut 223(8):4695–4708. https://doi.org/10.1007/s11270-012-1226-1

    Article  Google Scholar 

  • Khatri N, Tyagi S (2015) Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front Life Sci 8(1):23–39. https://doi.org/10.1080/21553769.2014.933716

    Article  Google Scholar 

  • Langmuir D (1997) Aqueous Environmental Geochemistry. Prentice Hall Upper Saddle River, NJ, New Jersey

    Google Scholar 

  • Li S, Lu XX, He M, Zhou Y, Bei R, Li L, Ziegler AD (2011) Major element chemistry in the upper Yangtze River: a case study of the Longchuanjiang River. Geomorphology 129(1–2):29–42. https://doi.org/10.1016/j.geomorph.2011.01.010

    Article  Google Scholar 

  • Louis Y, Pernet-Coudrier B, Varrault G (2014) Implications of effluent organic matter and its hydrophilic fraction on zinc(II) complexation in rivers under strong urban pressure: Aromaticity as an inaccurate indicator of DOM-metal binding. Sci Total Environ 490:830–837. https://doi.org/10.1016/j.scitotenv.2014.04.123

    Article  Google Scholar 

  • Ly QV, Maqbool T, Hur J (2017) Unique characteristics of algal dissolved organic matter and their association with membrane fouling behavior: a review. Environ Sci Pollut Res 24(12):11192–11205. https://doi.org/10.1007/s11356-017-8683-4

    Article  Google Scholar 

  • Ma H, Allen HE, Yin Y (2001) Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent. Water Res 35(4):985–996. https://doi.org/10.1016/S0043-1354(00)00350-X

    Article  Google Scholar 

  • Maatouk E (2014) Caractérisation des eaux usées au Liban: Impact sur le fonctionnement des stations d’épuration. Ph.D. Thesis, University of Paris-Est, France

  • MacCarthy P (2001) The principles of humic substances. Soil Sci 166(11):738–751. https://doi.org/10.1097/00010694-200111000-00003

    Article  Google Scholar 

  • Malcolm RL, MacCarthy P (1992) Quantitative evaluation of XAD-8 and XAD-4 resins used in tandem for removing organic solutes from water. Environ Int 18(6):597–607. https://doi.org/10.1016/0160-4120(92)90027-2

    Article  Google Scholar 

  • Manzano MG, Návar J (2000) Processes of desertification by goats overgrazing in the Tamaulipan thornscrub (matorral) in north-eastern Mexico. J Arid Environ 44(1):1–17. https://doi.org/10.1006/jare.1999.0577

    Article  Google Scholar 

  • Massoud MA, El-Fadel M, Scrimshaw M, Lester J (2004) Land use impact on the spatial and seasonal variation of the contaminant loads to Abou Ali River and its coastal zone in North Lebanon. Agric Eng Int CIGRE J 6:1–18

    Google Scholar 

  • Massoud MA, El-Fadel M, Scrimshaw MD, Lester JN (2006) Factors influencing development of management strategies for the Abou Ali River in Lebanon II: seasonal and annual variation. Sci Total Environ 362(1–3):31–41. https://doi.org/10.1016/j.scitotenv.2005.09.056

    Article  Google Scholar 

  • Matar Z, Soares Pereira C, Chebbo G, Uher E, Troupel M, Boudahmane L, Saad M, Gourlay-France C, Rocher V, Varrault G (2015) Influence of effluent organic matter on copper speciation and bioavailability in rivers under strong urban pressure. Environ Sci Pollut Res 22(24):19461–19472. https://doi.org/10.1007/s11356-015-5110-6

    Article  Google Scholar 

  • Matar Z (2012) Influence de la matière organique dissoute d’origine urbaine sur la spéciation et la biodisponibilité des métaux dans les milieux récepteurs anthropisés. Ph.D. Thesis, University of Paris-Est, France

  • Merhabi F, Amine H, Halwani J (2019) Evaluation de la qualité des eaux de surface de la rivière Kadicha. J Sci Libanais 20(1):10–34

    Google Scholar 

  • Mulholland PJ (2003) Large-scale patterns in dissolved organic carbon concentration, flux, and sources. Aquatic Ecosyst. https://doi.org/10.1016/b978-012256371-3/50007-x

    Article  Google Scholar 

  • Muresan B, Pernet-Coudrier B, Cossa D, Varrault G (2011) Measurement and modeling of mercury complexation by dissolved organic matter isolates from freshwater and effluents of a major wastewater treatment plant. Appl Geochem 26(12):2057–2063. https://doi.org/10.1016/j.apgeochem.2011.07.003

    Article  Google Scholar 

  • Mustapha H, Cherifa H, Abdelkrim H, Abdellah G, Abdelali T (2014) Assessment of water pollution in the semi-arid region: case watershed Wadi Saida (Northwest of Algeria). Desalin Water Treat 52(31–33):5995–6008. https://doi.org/10.1080/19443994.2013.812984

    Article  Google Scholar 

  • Parise M, Closson D, Gutiérrez F, Stevanović Z (2015) Anticipating and managing engineering problems in the complex karst environment. Environ Earth Sci 74(12):7823–7835. https://doi.org/10.1007/s12665-015-4647-5

    Article  Google Scholar 

  • Park MH, Lee TH, Lee BM, Hur J, Park DH (2010) Spectroscopic and chromatographic characterization of wastewater organic matter from a biological treatment plant. Sensors 10(1):254–265. https://doi.org/10.3390/s100100254

    Article  Google Scholar 

  • Pernet-Coudrier B, Clouzot L, Varrault G, Tusseau-Vuillemin MH, Verger A, Mouchel JM (2008) Dissolved organic matter from treated effluent of a major wastewater treatment plant: characterization and influence on copper toxicity. Chemosphere 73(4):593–599. https://doi.org/10.1016/j.chemosphere.2008.05.064

    Article  Google Scholar 

  • Pernet-Coudrier B, Varrault G, Saad M, Croue JP, Dignac MF, Mouchel JM (2011) Characterisation of dissolved organic matter in Parisian urban aquatic systems: predominance of hydrophilic and proteinaceous structures. Biogeochemistry 106(1):89–106. https://doi.org/10.1007/s10533-010-9480-z

    Article  Google Scholar 

  • Pernet-Coudrier B (2008) Influence de la matière organique dissoute sur la spéciation et la biodisponibilité des métaux: cas de la Seine, un milieu sous forte pression urbaine. Ph.D. Thesis, University of Paris-Est, France

  • Petrone KC, Richards JS, Grierson PF (2009) Bioavailability and composition of dissolved organic carbon and nitrogen in a near coastal catchment of South-Western Australia. Biogeochemistry 92(1–2):27–40. https://doi.org/10.1007/s10533-008-9238-z

    Article  Google Scholar 

  • Reasoner DJ (2004) Heterotrophic plate count methodology in the United States. Int J Food Microbiol 92(3):307–315. https://doi.org/10.1016/j.ijfoodmicro.2003.08.008

    Article  Google Scholar 

  • Rodríguez-Murillo JC, Filella M (2015) Temporal evolution of organic carbon concentrations in Swiss lakes: trends of allochthonous and autochthonous organic carbon. Sci Total Environ 520:13–22. https://doi.org/10.1016/j.scitotenv.2015.02.085

    Article  Google Scholar 

  • Sarathy V, Allen HE (2005) Copper complexation by dissolved organic matter from surface water and wastewater effluent. Ecotoxicol Environ Saf 61(3):337–344. https://doi.org/10.1016/j.ecoenv.2005.01.006

    Article  Google Scholar 

  • Seidl M (1997) Caractérisation des rejets urbains de temps de pluie et de leurs impacts sur l’oxygénation de la Seine. Ph.D. Thesis, Ecole Nationale des Ponts et Chaussées. France

  • Sirivedhin T, Gray KA (2005) Part I. Identifying anthropogenic markers in surface waters influenced by treated effluents: a tool in potable water reuse. Water Res 39(6):1154–1164. https://doi.org/10.1016/j.watres.2004.11.032

    Article  Google Scholar 

  • Soares-Pereira C (2016) Influence de la matière organique dissoute d’origine urbaine sur la spéciation des micropolluants : de la station d’épuration au milieu récepteur. Ph.D. Thesis, University of Paris-Est. France

  • Stackpoole SM, Stets EG, Clow DW, Burns DA, Aiken GR, Aulenbach BT, Creed IF, Hirsch RM, Laudon H, Pellerin BA, Striegl RG (2017) Spatial and temporal patterns of dissolved organic matter quantity and quality in the Mississippi River Basin, 1997–2013. Hydrol Process 31(4):902–915. https://doi.org/10.1002/hyp.11072

    Article  Google Scholar 

  • Stevenson F-J (1994) Humus chemistry: Genesis, composition, reaction, 2nd edn. Wiley, New York

    Google Scholar 

  • Tessier A, Turner DR (1995) Metal speciation and bioavailability in aquatic systems. Wiley, Chichester

    Google Scholar 

  • Thornton DCO (2014) Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur J Phycol 49(1):20–46. https://doi.org/10.1080/09670262.2013.875596

    Article  Google Scholar 

  • Truchot MC et al (1994) La pollution due aux rejets urbains par temps de pluie : impacts sur les milieux récepteurs. La Houille Blanche 1–2:97–105

    Article  Google Scholar 

  • Tzortziou M, Zeri C, Dimitriou E, Ding Y, Jaffe R, Anagnostou E, Pitta E, Mentzafou A (2015) Colored dissolved organic matter dynamics and anthropogenic influences in a major transboundary river and its coastal wetland. Limnol Oceanogr 60(4):1222–1240. https://doi.org/10.1002/lno.10092

    Article  Google Scholar 

  • Varrault G, Parlanti E, Matar Z, Garnier J, Nguyen PT, Derenne S, Rocher V, Muresan B, Louis Y, Soares-Pereira C, Goffin A, Benedetti MF, Bressy A, Gelabert A, Guo Y, Cordier MA (2019) Aquatic Organic Matter in the Seine Basin: Sources, Spatio-Temporal Variability, Impact of Urban Discharges and Influence on Micro-pollutant. Springer, Berlin

    Google Scholar 

  • Violleau D (1999) Intérêt du fractionnement et de l’extraction des matières organiques naturelles d’eaux de surface pour l’étude de leurs propriétés structurales et de leur pouvoir complexant vis-à-vis du cuivre. Ph.D. Thesis, University of Poitiers, France

  • Wang T, Wang L, Chen Q, Kalogerakis N, Ji R, Ma Y (2020) Interactions between microplastics and organic pollutants: Effects on toxicity, bioaccumulation, degradation, and transport. Sci Total Environ 748:142427. https://doi.org/10.1016/j.scitotenv.2020.142427

    Article  Google Scholar 

  • Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708

    Article  Google Scholar 

  • Wu W, Yang J, Xu S, Yin H (2008) Applied Geochemistry Geochemistry of the headwaters of the Yangtze River, Tongtian He and Jinsha Jiang : Silicate weathering and CO 2 consumption. Appl Geochem 23(12):3712–3727. https://doi.org/10.1016/j.apgeochem.2008.09.005

    Article  Google Scholar 

  • Xue S, Zhao Q, Ma X, Li F, Wang J, Wei L (2011) Comparison of dissolved organic matter fractions in a secondary effluent and a natural water. Environ Monit Assess 180(1–4):371–383. https://doi.org/10.1007/s10661-010-1793-9

    Article  Google Scholar 

  • Zheng X, Khan MT, Croué JP (2014) Contribution of effluent organic matter (EfOM) to ultrafiltration (UF) membrane fouling: Isolation, characterization, and fouling effect of EfOM fractions. Water Res 65:414–424. https://doi.org/10.1016/j.watres.2014.07.039

    Article  Google Scholar 

Download references

Acknowledgements

This work was financed by the research grant programs of the Lebanese University (le projet est soutenu par le programme de subvention de la recherche scientifique à l’Université Libanaise). The funding source was not involved in the study design, writing of the report, and decision to submit the article for publication. We thank the research assistants of the Research and Analysis Platform for Environmental Sciences (PRASE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Matar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 144 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maatouk, E., Samrani, A.E., Sawan, R. et al. Influence of Diverse Urban Pressures on Water Characteristics in a Small Eastern Mediterranean Watershed. Aquat Geochem 28, 111–133 (2022). https://doi.org/10.1007/s10498-022-09405-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-022-09405-w

Keywords

Navigation