Skip to main content

Advertisement

Log in

Anticipating and managing engineering problems in the complex karst environment

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Karst environments are characterized by distinctive landforms and a peculiar hydrologic behavior dominated by subsurface drainage. Karst systems can be extremely complex, heterogeneous, and unpredictable due to the wide range of geological and hydrological controlling factors. The great variability results in serious problems for engineers, and in difficulties to characterize the karstified rock masses, and in designing the engineering works to be performed. The design and development of engineering projects in karst environments require specific approaches aimed at minimizing the detrimental effects of hazardous processes and environmental problems. Further, karst aquifers (that provide approximately 20–25 % of the world’s drinking water) are extremely vulnerable to pollution, due to the direct connection between the surface and the subsurface drainage, the rapidity of the water flow in conduit networks, and the very low depuration capability. Sinkholes are the main source of engineering problems in karst environments, and may cause severe damage in any human structure. The strategies and solutions that may be applied to mitigate sinkhole problems are highly variable and largely depend on the kind of engineering structure, the karst setting, and the typology and size of the sinkholes. A sound geological model, properly considering the peculiarities of karst and its interactions with the human environment, is essential for the design of cost-effective and successful risk reduction programs. Due to the unique direct interaction between surface and subsurface environments, and the frequent ground instability problems related to underground karstification, management of karst environments is a very delicate matter. Disregarding such circumstances in land-use planning and development inevitably results in severe problems with high economic impacts. Karst environments require specific investigation methods in order to properly manage and safeguard the sensitive geo-ecosystems and natural resources associated with them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abelson M, Baer G, Shtivelman V, Wachs D, Raz E, Crouvi O, Kurzo I, Yechieli Y (2003) Collapse-sinkholes and radar interferometry reveal neotectonics concealed within the Dead Sea. Geophys Res Lett 30(10):1545 52/1–52/4

    Article  Google Scholar 

  • Aller L, Bennet T, Lehr JH, Petty RJ, Hackett G (1987) DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeological setting. US EPA, 622 pp

  • Andriani GF, Parise M (2015) On the applicability of geomechanical models for carbonate rock masses interested by karst processes. Environ Earth Sciences, this special issue

  • Bailly-Comte V, Jourde H, Roesch A, Pistre S (2008) Mediterranean flash flood transfer through karstic area. Environ Geol 54(3):605–614

    Article  Google Scholar 

  • Beck BF (2005) Soil piping and sinkhole failures. In: Culver DC, White WB (eds) Enyclopedia of caves. Elsevier, New York, pp 523–528

    Google Scholar 

  • Bonacci O, Ljubenkov I, Roje-Bonacci T (2006) Karst flash floods: an example from the Dinaric karst Croatia. Nat Hazards Earth Syst Sci 6:195–203

    Article  Google Scholar 

  • Bonetto S, Fiorucci A, Fornaro M, Vigna B (2008) Subsidence hazards connected to quarrying activities in a karst area: the case of the Moncalvo sinkhole event (Piedmont, NW Italy). Estonian J Earth Sci 57:125–134

    Article  Google Scholar 

  • Burdon D, Safadi C (1963) Ras-El-Ain: The great karst spring of Mesopotamia. An hydrogeological study. J Hydrol 1:58–95

    Article  Google Scholar 

  • Closson D, Abou Karaki N (2009) Human-induced geological hazards along the Dead Sea coast. Environ Geol 58:371–380

    Article  Google Scholar 

  • Closson D, AbouKaraki N (2013) Sinkhole hazards prediction at Ghor Al Haditha, Dead Sea, Jordan: “salt edge” and “Tectonic” models contribution—a rebuttal to “Geophysical prediction and following development sinkholes in two Dead Sea areas, Israel and Jordan, by: Ezersky, M.G., Eppelbaum, L.V., Al-Zoubi,A.3, Keydar S., Abueladas, A-R., Akkawi E., and Medvedev, B. Environ Earth Sci 70(6):2919–2922

    Article  Google Scholar 

  • Closson D, Lamoreaux PE, Abou Karaki N, Al-Fugha H (2007) Karst system developed in salt layers of the Lisan Peninsula, Dead Sea, Jordan. Environ Geol 52:155–172

    Article  Google Scholar 

  • DeWaele J, Gutiérrez F, Parise M, Plan L (2011) Geomorphology and natural hazards in karst areas: a review. Geomorphology 134(1–2):1–8

    Article  Google Scholar 

  • Döerfliger N, Zwahlen F (1997) EPIK, méthode de cartographie de la vulnérabilité des aquiferes karstiques pour la délimitation des zones de protection. 12th International Congress of Speleology. Suisse 2:209–212

    Google Scholar 

  • Ezersky M, Frumkin A (2013) Fault-Dissolution front relations and the Dead Sea sinkhole problem. Geomorphology 201:35–44

    Article  Google Scholar 

  • Fidelibus MD, Gutiérrez F, Spilotro G (2011) Human-induced hydrogeological changes and sinkholes in the coastal gypsum karst of Lesina Marina area (Foggia Province, Italy). Eng Geol 118:1–19

    Article  Google Scholar 

  • Ford DC, Williams P (2007) Karst hydrogeology and geomorphology. Wiley, Chichester

    Book  Google Scholar 

  • Frumkin A (2013) Salt karst. In: Frumkin A (ed) Treatise on geomorphology, vol 6. Elsevier, Amsterdam, pp 407–424

    Chapter  Google Scholar 

  • Galve JP, Gutiérrez F, Remondo J, Bonachea J, Lucha P, Cendrero A (2009) Evaluating and comparing methods of sinkhole susceptibility mapping in the Ebro Valley evaporite karst (NE Spain). Geomorphology 111:160–172

    Article  Google Scholar 

  • Goldscheider N (2005) Karst groundwater vulnerability mapping: application of a new method in the Swabian Alb, Germany. Hydrogeol J 13(4):555–565

    Article  Google Scholar 

  • Gunn J (2007) Contributory area definition for groundwater source protection and hazard mitigation in carbonate aquifers. In: Parise M, Gunn J (eds) Natural and anthropogenic hazards in Karst areas: recognition, analysis, and mitigation. Geological Society, London, pp 97–109 279

    Google Scholar 

  • Gutiérrez F (2010) Hazards associated with karst. In: Alcántara I, Goudie A (eds) Geomorphological hazards and disaster prevention. Cambridge University Press, Cambridge, pp 161–175

    Chapter  Google Scholar 

  • Gutiérrez F, Cooper AH (2013) Surface morphology of gypsum karst. In: Frumkin A (ed) Treatise on geomorphology, vol. 6. Elsevier, Amsterdam, pp 425–437

    Chapter  Google Scholar 

  • Gutiérrez F, Parise M, De Waele J, Jourde H (2014) A review on natural and human-induced geohazards and impacts in karst. Earth Sci Rev 138:61–88

    Article  Google Scholar 

  • Gutiérrez F, Mozafari M, Carbonel D, Gómez R, Raeisi E (2015) Leakage problems in dams built on evaporites. the case of La Loteta Dam (NE Spain), a reservoir in a large karstic depression generated by interstratal salt dissolution. Eng Geol 185:139–154

    Article  Google Scholar 

  • Iovine G, Parise M, Trocino A (2010) Breakdown mechanisms in gypsum caves of southern Italy, and the related effects at the surface. Zeitschrift fur Geomorphologie 54(suppl. 2):153–178

    Article  Google Scholar 

  • Jones CE, Blom RG (2014) Bayou Corne, Louisiana, sinkhole: precursory deformation measured by radar interferometry. Geology 42:111–114

    Article  Google Scholar 

  • Jourde H, Lafare A, Mazzilli N, Belaud G, Neppel L, Doerfliger N, Cernesson F (2014) Flash flood mitigation as a positive consequence of anthropogenic forcings on the groundwater resource in a karst catchment. Environ Earth Sci 71:573–583

    Article  Google Scholar 

  • Kafri U, Yechieli Y (2010) Groundwater base level changes and adjoining hydrological systems. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Kavouri K, Plagnes V, Tremoulet J, Dörfliger N, Rejiba F, Marchet P (2011) PaPRIKa: a method for estimating karst resource and source vulnerability—application to the Ouysse karst system (southwest France). Hydrogeol J 19:339–353

    Article  Google Scholar 

  • Klimchouk A (2000) Speleogenesis of the great gypsum mazes in the Western Ukraine. In: Klimchouk A, Ford DC, Palmer AN, Dreybrodt W (eds) Speleogenesis. Evolution of karst aquifers. National Speleological Society, Huntsville, pp 261–273

    Google Scholar 

  • LaMoreaux PE, Hughes TH, Memon BA, Lineback N (1989) Hydrogeologic assessment—Figeh Spring, Damascus, Syria. Environ Geol Water Sci 13(2):77–127

    Google Scholar 

  • López-Chicano M, Calvache ML, Martín-Rosales W, Gisbert J (2002) Conditioning factors in flooding of karstic poljes—the case of the Zafarraya polje (South Spain). Catena 49:331–352

    Article  Google Scholar 

  • Lucha P, Cardona F, Gutiérrez F, Guerrero J (2008) Natural and human-induced dissolution and subsidence processes in the salt outcrop of the Cardona Diapir (NE Spain). Environ Geol 53:1023–1035

    Article  Google Scholar 

  • Milanović PT (1981) Karst hydrogeology. Water Resources Publishing, Colorado

    Google Scholar 

  • Milanović PT (2000) Geological engineering in karst. Zebra, Belgrade

    Google Scholar 

  • Milanović P (2002) The environmental impacts of human activities and engineering constructions in karst regions. Episodes 25:13–21

    Google Scholar 

  • Newton JG (1987) Development of sinkholes resulting from man’s activities in the eastern United States. U.S.G.S. Circular 968

  • North LA, van Beynen PE, Parise M (2009) Interregional comparison of karst disturbance: west-central Florida and southeast Italy. J Environ Manage 9(5):1770–1781

    Article  Google Scholar 

  • Palma B, Ruocco A, Lollino P, Parise M (2012) Analysis of the behaviour of a carbonate rock mass due to tunneling in a karst setting. In: Han KC, Park C, Kim JD, Jeon S, Song JJ (Eds), The present and future of rock engineering. Proceedings of 7th Asian Rock Mech Symp, Seoul, pp 772–781

  • Paloc H, Mijatović B (1984) Captage et utilisation de l’eau des aquiferes karstiques. In: Burger A, Dubertret L (Eds) Hydrogeology of karstic terrains. Case histories. International Contributions to Hydrogeology, IAH, 1. Verlag Heinz Heise, Hannover, pp 101–112

  • Parise M (2003) Flood history in the karst environment of Castellana–Grotte (Apulia, southern Italy). Nat Hazards Earth Syst Sci 3(6):593–604

    Article  Google Scholar 

  • Parise M (2010) Hazards in karst. In: Bonacci O (Ed), Proceedings of International Interdisciplinary Scientific Conference “Sustainability of the karst environment. Dinaric karst and other karst regions”, Plitvice Lakes (Croatia), 23–26 Sep 2009, IHP-UNESCO, Series on Groundwater 2, pp 155–162

  • Parise M, Gunn J (eds) (2007) Natural and anthropogenic hazards in karst areas: recognition analysis and mitigation. Geol. Soc. London, sp. publ, London, p 279

    Google Scholar 

  • Parise M, De Waele J, Gutierrez F (2008) Engineering and environmental problems in karst—an introduction. Eng Geol 99:91–94

    Article  Google Scholar 

  • Parise M, De Waele J, Gutierrez F (2009) Current perspectives on the environmental impacts and hazards in karst. Environ Geol 58(2):235–237

    Article  Google Scholar 

  • Radulović M (2000) Karst hydrogeology of Montenegro. Geological Bulletin 18, Spec. Ed. Geol. Survey of Montenegro, Podgorica, 271 pp

  • Ravbar N, Goldscheider N (2007) Proposed methodology of vulnerability and contamination risk mapping for the protection of karst aquifers in Slovenia. Acta Carsologica 36(3):461–475

    Google Scholar 

  • Salameh E, El-Naser H (2000a) Changes in the dead sea level and their impacts on the surrounding groundwater bodies. Acta Hydrochim Hydrobiol 28(1):24–33

    Article  Google Scholar 

  • Salameh E, El-Naser H (2000b) The interface configuration of the fresh-/dead Sea water—theory and measurements. Acta Hydrochim Hydrobiol 28(6):323–328

    Article  Google Scholar 

  • Sivan O, Yechieli Y, Herut B, Lazar B (2005) Geochemical evolution and timescale of seawater intruding into the coastal aquifer of Israel. Geochim Cosmochim Acta 69(3):579–592

    Article  Google Scholar 

  • Song KI, Cho GC, Chang SB (2012) Identification, remediation and analysis of karst sinkholes in the longest railroad tunnel in South Korea. Eng Geol 135–136:92–105

    Article  Google Scholar 

  • Stevanović Z (2010) Utilization and regulation of springs. In: Kresic N, Stevanovic Z (eds) Groundwater hydrology of springs: Engineering, theory, management and sustainability. Elsevier Inc BH, Burlington, pp 339–388

    Chapter  Google Scholar 

  • Stevanović Z (2013) Global trend and negative synergy: climate changes and groundwater over-extraction. Proceedings International Conference on “Climate change impact on water resources”, 17–18 Oct. 2013, Institute of Wat. Manag. J.Cerni & WSDAC, Belgrade, pp 42–45

  • Stevanović Z (2015) Engineering regulation of karstic springflow to improve water sources in critical dry periods. In: Stevanović Z (Ed) Karst aquifers—characterization and engineering. Series: Professional Practice in Earth Science. Springer Intern. Publ. Switzerland, pp 490–530

  • Stevanović Z, Jemcov I, Milanović S (2007) Management of karst aquifers in Serbia for water supply. Environ Geol 51(5):743–748

    Article  Google Scholar 

  • Stevanović Z, Milanović S, Ristić V (2010) Supportive methods for assessing effective porosity and regulating karst aquifers. Acta Carsologica 39(2):313–329

    Google Scholar 

  • Stevanović Z, Balint Z, Gadain H, Trivić B, Marobhe I, Milanović S. et al (2012) Hydrogeological survey and assessment of selected areas in Somaliland and Puntland. Technical Report No. W-20, FAO-SWALIM (GCP/SOM/049/EC) Project, (http://www.faoswalim.org/water_reports) Nairobi

  • Tabbal MA, Mansour Z (2009) Extensive geotechnical instrumentation program to control dike raising constructed on soft clay. Jurnal Ilmiah Semesta Teknika 12(2):147–156

    Google Scholar 

  • Taheri K, Gutiérrez F, Mohseni H, Raeisi E, Taheri M (2015) Sinkhole susceptibility mapping using the analytical hierarchy process (AHP) and magnitude-frequency relationships: a case study in Hamedan province, Iran. Geomorphology 234:64–79

    Article  Google Scholar 

  • van Beynen PE, Townsend KM (2005) A disturbance index for karst environments. Environ Manage 36(1):101–116

    Article  Google Scholar 

  • van Beynen PE, Brinkmann R, van Beynen K (2012) A sustainability index for karst environments. J Cave Karst Stud 74(2):221–234

    Article  Google Scholar 

  • Valenzuela P, Domínguez-Cuesta, MJ, Meléndez-Asensio, M, Jiménez-Sánchez, M (2015) Active sinkholes. A geomorphological and hydrogeological impact of the Pajares Tunnels (Cantabria Range, NW Spain). Engineeering Geology, in press

  • Vías JM, Andreo B, Perles MJ, Carrasco F, Vadillo I, Jiménez P (2006) Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method. Hydrogeol J 14(6):912–925

    Article  Google Scholar 

  • Waltham AC, Fookes PG (2003) Engineering classification of karst ground conditions. Q J Eng GeolHydrogeol 36:101–118

    Article  Google Scholar 

  • Waltham T, Bell F, Culshaw M (2005) Sinkholes and subsidence. Springer, Chichester

    Google Scholar 

  • White WB (1988) Geomorphology and hydrology of karst terrains. Oxford University Press, Oxford

    Google Scholar 

  • White WB (2002) Karst hydrology: recent developments and open questions. Eng Geol 65:85–105

    Article  Google Scholar 

  • Williams PW (2008) The role of the epikarst in karst and cave hydrogeology: a review. Int J Speleol 37:1–10

    Article  Google Scholar 

  • Yechieli Y (2006) The response of the groundwater system to changes in the Dead Sea level. In: Enzel Y, Agnon A, Stein M (Eds) New frontiers in dead sea paleoenvironmental research, Geological Society of America, Special Paper, pp 113–126

  • Yechieli Y, Abelson M, Bein A, Crouvi O, Shtivelman V (2006) Sinkholes “swarms” along the Dead Sea coast: reflection of disturbance of lake and adjacent groundwater systems. GSA Bulletin 118(9–10):1075–1087

    Article  Google Scholar 

  • Zhou W, Beck BF (2011) Engineering issues on karst. In: van Beynen P (ed) Karst Management. Springer, Dordrecht, pp 9–45

    Chapter  Google Scholar 

Download references

Acknowledgments

The work conducted by FG has been partially financed by the project CGL2013-40867-P (Ministerio de Economía y Competitividad, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Parise.

Additional information

This article is a part of a Topical Collection, “Engineering Problems in Karst”; edited by Mario Parise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parise, M., Closson, D., Gutiérrez, F. et al. Anticipating and managing engineering problems in the complex karst environment. Environ Earth Sci 74, 7823–7835 (2015). https://doi.org/10.1007/s12665-015-4647-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4647-5

Keywords

Navigation