Skip to main content
Log in

Interaction between surface waters and the Quaternary shallow alluvial aquifer of Lake Maga downstream: influence of ponds, streams, irrigation canals, and geological features (Far North, Cameroon)

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

The valorization of Lake Maga for agricultural purposes has not only contributed to the socio-economic development of the study area, but has also modified the surface water (SW) and groundwater (GW) flow regimes. Understanding the interaction between the SW and the shallow Quaternary aquifer, under land use change and soil structure modification, is still a challenge, especially in the semi-arid area. In this study, GW level, hydrogeochemical characterization, and geological features are used to understand, locally, the influence of Lake Maga, its associated hydraulic components, and the other SW bodies on the GW behaviour. GW levels were measured in 51 wells in December 2012 and monitored in February 2013, and in 15 wells (beyond the 51) in June 2017 and December 2018. Physicochemical parameters of SWs and GWs were measured in the field, and 15 water samples were collected for major ion characterization. The GW levels were close (mean value ≈5 m) to the land surface, with zero to very low (< 1 m) water level fluctuations near SW bodies. The GW levels (< 2 m) are influenced more by their proximity to irrigation canals, ponds, and streams than Lake Maga (mean ≈3.5 m). The analysis of electrical conductivity (EC) values and GW levels showed that the weakly mineralized (< 200 µS.cm−1) GW were associated with the shallower GW table level. The moderate GW mineralization (200 < EC < 700 µS.cm−1) were more influenced by the geological texture of the shallow aquifer. The analysis of the geological characteristics of the sub-shallow aquifer structure in the locality of Pouss is mainly sandy, while in the localities of Maga and Guirvidig, clay, clayey-sand and sandy-clay materials dominate. There are no trends in GW chemical evolution from Lake Maga waters towards the shallow groundwater table (SGWT). The mixing-ratios values showed that the SW contributed for more than 65% (mean) to the sub-shallow aquifer in the study area, and the highest SWs (80%) contribution occurred in the locality of Pouss, close to Lake Maga, pond, Logone River, irrigation canal, and seasonal stream, associated with the shallowest GW levels (< 1.5 m). The proximity to SW bodies and the texture of the fluvio-lacustrine deposit of the shallow aquifer strongly influenced GW table levels and their hydrogeochemical characteristics. This work could be a prerequisite to understand how the physicochemical and chemical properties of GW in the shallow aquifer evolve and respond under the influence of SW bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, A.A. and Fogg, G.E., 2014, The impact of groundwater and agricultural expansion on the archaeological sites at Luxor, Egypt. Journal of African Earth Sciences, 95, 93–104. https://doi.org/10.1016/j.jafrearsci.2014.02.007

    Article  ADS  Google Scholar 

  • Bello, M., Ketchemen-Tandia, B., Nlend, B., Huneau, F., Fouepe, A., Fantong, W.Y., Ngo, B.-N.S., Garel, E., and Celle-Jeanton, H., 2019, Shallow groundwater quality evolution after 20 years of exploitation in the southern Lake Chad: hydrochemistry and stable isotopes survey in the far north of Cameroon. Environmental Earth Sciences, 78, 1–19. https://doi.org/10.1007/s12665-019-8494-7

    Article  CAS  Google Scholar 

  • Biscaldi, R., 1970, Hydrogéologie de la région du Logone. Rapport de fin de mission Bureau de Recherche Géologique et Minière. Rapport 70 YAO 003, 513 p.

  • Bouyo H.M., Penaye, J., Njel, U.O., Moussango, A.P.I., Sep, J.P.N., Nyama, B.A., Wassouo W.J., Abate, J.M.E., Yaya, F., Mahamat, A., Ye, H., and Wu, F., 2016, Geochronological, geochemical and mineralogical constraints of emplacement depth of TTG suite from the Sinassi batholith in the Central African Fold Belt (CAFB) of northern Cameroon: implications for tectonomagmatic evolution. Journal of African Earth Sciences, 116, 9–41. https://doi.org/10.1016/j.jafrearsci.2015.12.005

    Article  ADS  Google Scholar 

  • Brabant, P. and Gavaud, M., 1985, Les sols et les ressources en terres du Nord Cameroun (province du Nord et de l’Extrême-Nord). ORSTOM-MESRES-IRA, Paris, France, 103 p.

    Google Scholar 

  • Cai, Z., Wang, W., Zhao, M., Ma, Z., Lu, C., and Li, Y., 2020, Interaction between surface water and groundwater in Yinchuan plain. Water, 12, 2635. https://doi.org/10.3390/w12092635

    Article  CAS  Google Scholar 

  • CBLT, 2015, Lake Chad development and climate resilience action plan. Open-file Report 102851 v2, Commission du Bassin du Lac Tchad (CBLT), N’Djamena, Chad, 80 p. https://documents1.world-bank.org/curated/en/417031467999134390/pdf/102851-WP-P149275-v2-Box394845B-PUBLIC-FRENCH-Plan-de-Developpment-et-dAdaptation-au-Changement-Cimatique-du-lac-Tchadpdf [Accessed on 06 December 2019].

  • Chen, H., Liu, Z., Huo, Z., Qu, Z., Xia, Y., and Fernald, A., 2016, Impacts of agricultural water saving practice on regional groundwater and water consumption in an arid region with shallow groundwater. Environmental Earth Sciences, 75, 1204. https://doi.org/10.1007/s12665-016-6006-6

    Article  ADS  Google Scholar 

  • Detay, M., 1987, Identification analytique et probabiliste des paramètres numériques et non numériques et modélisation de la connaissance en hydrogéologie Sub-sahélienne. Application au Nord-Cameroun. Thèse de Docteur ès-Sciences, Université de Nice, Nice, France, 456 p.

    Google Scholar 

  • Devèze, J.C., Jullien, J.F., and Papazian, V., 2003, Grands aménagements hydro-agricoles d’Afrique subsaharienne: poursuivre les évolutions institutionnelles. Afrique Contemporaine, 205, 193–203. https://doi.org/10.3917/afco.205.0193

    Article  Google Scholar 

  • Diaz, N., Dietrich, F., Cailleau, G., Sebag, D., Ngounou, N.B., and Verrecchia, E.P., 2016a, Can Mima-Like mounds be vertisol relics (Far-North region of Cameroon, Chad Basin)? Geomorphology, 261, 41–56. https://doi.org/10.1016/j.geomorph.2016.02.021

    Article  ADS  Google Scholar 

  • Diaz, N., Dietrich, F., Sebag, D., King, G.E., Valla, P.G., Durand, A., Garcin, Y., de Saulieu, G., Deschamps, P., Herman, F., and Verrecchia, E.P., 2018, Pedo-sedimentary constituents as paleoenvironmental proxies in the Sudano-Sahelian belt during the Late Quaternary (southwestern Chad Basin). Quaternary Science Reviews, 191, 348–362. https://doi.org/10.1016/j.quascirev.2018.05.022

    Article  ADS  Google Scholar 

  • Diaz, N., King, G.E., Valla, P.G., Herman, F., and Verrecchia, E.P., 2016b, Pedogenic carbonate nodules as soil time archives: challenges and investigations related to OSL dating. Quaternary Geochronology, 36, 120–133. https://doi.org/10.1016/j.quageo.2016.08.008

    Article  Google Scholar 

  • Dietrich, F., Diaz, N., Deschamps, P., Ngounou, N.B., Sebag, D., and Verrecchia, E.P., 2017, Origin of calcium in pedogenic carbonate nodules from silicate watersheds in the Far North region of Cameroon: respective contribution of in situ weathering source and dust input. Chemical Geology, 460, 54–69. https://doi.org/10.1016/j.chem-geo.2017.04.015

    Article  ADS  CAS  Google Scholar 

  • Droubi, A., Cheverry, C., Fritz, B., and Tardy, Y., 1976, Geochemistry of the waters and salts in the soils of the Lake Chad polders: application of a thermodynamic model simulating evaporation. Chemical Geology 17, 165–177. https://doi.org/10.1016/0009-2541(76)90033-4

    Article  ADS  CAS  Google Scholar 

  • Ekodeck, E.G., 1976, Contribution à l’étude de la nature et du comportement géotechnique des dépôts superficiels gonflants du Nord Cameroun. Thèse de Doctorat de 3ème Cycle de Grenoble I, Université de Grenoble I, Grenoble, France, 181 p.

    Google Scholar 

  • Fosso, T.P.M., Tchameni, R., André-Mayer, A.-S., Dakoure, S.H., Turlin, F., Poujol, M., Nomo, N.E., Fouotsa, S.N.A., and Rouer, O., 2018, Evidence for Nb-Ta occurrences in the syn-tectonic Pan-African Mayo Salah leucogranite (northern Cameroon): constraints from Nb-Ta oxide mineralogy, geochemistry and U-Pb LA-ICP-MS geochronology on columbite and monazite. Minerals, 8, 188. https://doi.org/10.3390/min8050188

    Article  ADS  Google Scholar 

  • Goni, B.I., Taylor, R.G., Favreau, G., Shamsudduha, M., Nazoumou, Y., and Ngounou, N.B., 2021, Groundwater recharge from heavy rainfall in the southwestern Lake Chad Basin: evidence from isotopic observations. Hydrological Sciences Journal, 66, 1359–1371. https://doi.org/10.1080/02626667.2021.1937630

    Article  CAS  Google Scholar 

  • Green, A.J., Alcorlo, P., Peeters, E.T., Morris, E.P., Espinar, J.L., Bravo-Utrera, M.A., Bustamante, J., Díaz-Delgado, R., Koelmans, A.A., Mateo, R., Mooij, W.M., Rodríguez-Rodríguez, M., van Nes, E.H., and Scheffer, M., 2017, Creating a safe operating space for wetlands in a changing climate. Frontiers in Ecology and the Environment, 15, 99–107. https://doi.org/10.1002/fee.1459

    Article  Google Scholar 

  • Guo, Q., Yang, Y., Han, Y., Li, J., and Wang, X., 2019, Assessment of surface-groundwater interactions using hydrochemical and isotopic techniques in a coalmine watershed, NW China. Environmental Earth Sciences, 78, 91. https://doi.org/10.1007/s12665-019-8053-2

    Article  ADS  Google Scholar 

  • Hosono, T., Tokunaga, T., Kagabu, M., Nakata, H., Orishikida, T., Lin, I.-T., and Shimada, J., 2013, The use of δ15N and δ18O tracers with an understanding of groundwater flow dynamics for evaluating the origins and attenuation mechanisms of nitrate pollution. Water Research, 47, 2661–2675. https://doi.org/10.1016/j.watres.2013.02.020

    Article  CAS  PubMed  Google Scholar 

  • Kalbus, E., Reinstorf, F., and Schirmer, M., 2006, Measuring methods for groundwater-surface water interactions: a review. Hydrology of Earth System Sciences, 10, 873–887. https://doi.org/10.5194/hess-10-873-2006

    Article  ADS  CAS  Google Scholar 

  • Karmegam, U., Chidambaram, S., Prasanna, M.V., Sasidhar, P., Manikandan, S., Johnsonbabu, G., Dheivanayaki, V., Paramaguru, P., Manivannan, R., Srinivasamoorthy, K., and Anandhan, P., 2011, A study on the mixing proportion in groundwater samples by using piper diagram and PHREEQC model. China Journal of Geochemistry, 30, 490–495. https://doi.org/10.1007/s11631-011-0533-3

    Article  CAS  Google Scholar 

  • Kemgang, D.T., Boucher, M., Mvondo V.Y.E., Favreau, G., Ngounou, N.B., Yalo, N., Goni, B.I., and Legchenko, A., 2019, Contribution of time domain electromagnetic and magnetic resonance soundings to groundwater assessment at the margin of Lake Chad Basin, Cameroon. Journal of Applied Geophysics, 170, 103840. https://doi.org/10.1016/j.jappgeo.2019.103840

    Article  Google Scholar 

  • Ketchemen-Tandia, B., 1992, Etude hydrogéologique du Grand Yaéré (Extrême-Nord du Cameroun) synthèse hydrogéologique et étude de la recharge par les isotopes de l’environnement. Thèse de Doctorat de l’Université Cheikh Anta Diop de Dakar, Dakar Fann, Senegal 216 p.

  • Kim, R.-H., Kim, J.-H., Ryu, J.-S., and Koh, D.-C., 2019, Hydrogeochemical characteristics of groundwater influenced by reclamation, seawater intrusion, and land use in the coastal area of Yeonggwang, Korea. Geosciences Journal, 23, 603–619. https://doi.org/10.1007/s12303-018-0065-5

    Article  ADS  CAS  Google Scholar 

  • Leblanc, M.J., Leduc, C., Stagnitti, F., van Oevelen, P.J., Jones, C., Mofor, L.A., Razack, M., and Favreau, G., 2006, Evidence for Megalake Chad, north-central Africa, during the late Quaternary from satellite data. Palaeogeography, Palaeoclimatology, Palaeoecology, 230, 230–242. https://doi.org/10.1016/j.palaeo.2005.07.016

    Article  ADS  Google Scholar 

  • Le Goulven, P., Lacombe, G., Burte, J., Gioda, A., and Calvez, R., 2009, Techniques de mobilisation des ressources en eau et pratiques d’utilisation en zones arides: bilans, évolutions et perspectives. Sécheresse, 20, 17–30. https://doi.org/10.1684/sec.2009.0166

    Article  Google Scholar 

  • Lemoalle, J. and Magrin, G., 2014, Development of Lake Chad: current situation and possible outcomes. Expert Group Review Collection, IRD Editions, Marseille, France, 216 p. https://doi.org/10.4000/books.irdeditions.11648

  • L’Hôte, Y., Mahe, G., Some, B., and Triboulet, J.-P., 2002, Analysis of a Sahelian annual rainfall index from 1896 to 2000; the drought continues. Hydrological Sciences Journal, 47, 563–572. https://doi.org/10.1080/02626660209492960

    Article  Google Scholar 

  • Li, D., Chen, H., Jia, S., and Lv, A., 2020, Possible hydrochemical processes influencing dissolved solids in surface water and groundwater of the Kaidu River Basin, northwest China. Water, 12, 467. https://doi.org/10.3390/w12020467

    Article  CAS  Google Scholar 

  • Lienou, G., Sighomnou, D., Sigha-Nkamdjou, L., Mahé, G., Ekodeck, G.E., and Tchoua, F., 2003, Système hydrologique du Yaéré (Extrême-Nord Cameroun), changements climatiques et actions anthropiques: conséquences sur le bilan des transferts superficiels. In: Servat, E., Najem, W., Leduc, C., and Shakeel, A. (eds.), Hydrology of Méditerranean and Semiarid Regions. Proceedings of an International Symposium, AISH, Wallingford, p. 403–409. https://www.documentation.ird.fr/hor/fdi:010047440 [Accessed on 06 October 2014].

    Google Scholar 

  • Liu, B., Malekian, R., and Xu, J., 2016, Groundwater mixing process identification in deep mines based on hydrogeochemical property analysis. Applied Sciences, 7, 42. https://doi.org/10.3390/app7010042

    Article  Google Scholar 

  • Liu, Q. and Mou, X., 2014, Interactions between surface water and groundwater: key processes in ecological restoration of degraded coastal wetlands caused by reclamation. Wetlands, 36, 95–102. https://doi.org/10.1007/s13157-014-0582-6

    Article  CAS  Google Scholar 

  • Loukman, B., Nakolendousse, S., Mahamat, N.A., and Nguinambaye, M.M., 2017, Caractérisation hydrochimique de la nappe de Yao et ses environs: relations entre eaux de surface (Lac-Fitri) et eaux souterraines. International Journal of Biology and Chemical Sciences, 11, 1336–1349. https://doi.org/10.4314/ijbcs.v11i3.33

    Article  CAS  Google Scholar 

  • Ma, L., Huang, T., Qiu, H., Yang, Z., He, X., and Qian, J., 2020, Hydrogeochemical characteristic evaluation and irrigation suitability assessment of shallow groundwater in Dangshan County, China. Geosciences Journal, 25, 731–748. https://doi.org/10.1007/s12303-020-0064-1

    Article  ADS  Google Scholar 

  • Mahamat, N.A., Humeau, F., Mahamat, A., Mahamat, S., Boum-Nkot, N.S., Nlend, B., Djebebe-Ndjiguim, C.L., Foto, E., Sanoussi, R., Araguas-Araguas, L., and Vystavna, Y., 2022, Shallow Quaternary groundwater in the Lake Chad Basin is resilient to climate change but requires sustainable management strategy: results of isotopic investigation. Science of The Total Environment, 851, 158152. https://doi.org/10.1016/j.scitotenv.2022.158152

    Article  ADS  Google Scholar 

  • Mahamat, N.A., Vallet-Coulomb, C., Bouchez, C., Ginot, P., Doumnang, J.C., Sylvestre, F., and Deschamps, P., 2019, Geochemistry of the Lake Chad tributaries under strongly varying hydro-climatic conditions. Aquatic Geochemistry, 26, 3–29. https://doi.org/10.1007/s10498-019-09363-w

    Article  Google Scholar 

  • Mooney, S., McDowell, S.P., O’Dwyer, J., and Hynds, P.D., 2019, Knowledge and behavioural interventions to reduce human health risk from private groundwater systems: a global review and pooled analysis based on development status. Science of The Total Environment, 716, 135338. https://doi.org/10.1016/j.scitotenv.2019.135338

    Article  ADS  PubMed  Google Scholar 

  • Morin, S., 2000, Géomorphologie. In: Seignobos, C. and Iyébi-Mandjek, O. (eds.), Atlas de la Province Extrême-Nord Cameroun. MINREST/INC-2000, Cameroon, p. 7–16. https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers16-08/010021986.pdf [Accessed on 21 August 2014].

  • Mvondo, V.Y.E., Kemgang, D.T., Favreau, G., and Ngounou, N.B., 2018, Use of geological and hydrogeochemical data to investigate depressed aquifers in the southern part of Lake Chad Basin (LCB), Cameroon. American Journal of Water Resources, 6, 169–175. https://doi.org/10.12691/ajwr-6-4-4

    CAS  Google Scholar 

  • Njitchoua, R. and Ngounou, N.B., 1997, Hydrogeochemistry and environmental isotope investigations of the north Diamare plain northern Cameroon. Journal of African Earth Sciences, 25, 307–316. https://doi.org/10.1016/S0899-5362(97)00105-X

    Article  ADS  Google Scholar 

  • Ngounou, N.B., 1993, Hydrogéologie d’aquifères complexes en zone semi-aride. Les aquifères quaternaires du Grand Yaéré (Nord Cameroun). Thèse de Doctorat de l’Université de Grenoble I, Grenoble, France, 357 p. https://theses.hal.science/tel-00783502 [Accessed on 12 October 2014].

  • Ngounou, N.B., Mudry, J., Aranyossy, J.E., Naah, E., and Sarrot R.J., 2007, Contribution of geology, hydrogeology and environmental isotopes to the knowledge of “piezometric depressions” of the Grand Yaere (northern Cameroon). Revue des Sciences de l’Eau, 20, 29–43. https://doi.org/10.7202/014905ar

    Google Scholar 

  • Oliveira, J.C.J., Andrade, G.R.P., Barbiero, L., Furquim, S.A.C., and Vidal-Torrado, P., 2019, Flooding effect on mineralogical and geochemical changes in alkaline-sodic soil system of northern Pantanal wetlands, Brazil. European Journal of Soil Sciences, 71, 433–447. https://doi.org/10.1111/ejss.12871

    Article  Google Scholar 

  • Parsons, D.F., Hayashi, M., and van der Kamp, G., 2004, Infiltration and solute transport under a seasonal wetland: bromide tracer experiments in Saskatoon, Canada. Hydrological Process, 18, 2011–2027. https://doi.org/10.1002/hyp.1345

    Article  ADS  Google Scholar 

  • Peterson, D.M. and Wilson, J.L., 1988, Variably saturated flow between streams and aquifers. Ph.D. Thesis, New Mexico Institute of Mining and Technology, Socorro University, Socorro, USA, 320 p.

    Google Scholar 

  • Pias, J. and Guichard, E., 1957, Origine et conséquences de l’existence d’un cordon sableux dans la partie Sud-Ouest de la cuvette tchadienne. Comptes Rendus de l’Académie des Sciences, 244, 791–793.

    Google Scholar 

  • Raimond, C., Rangé, C., and Réounodji, F., 2014, Le dynamisme des agricultures au Lac. In: Lemoalle, J. and Magrin, G. (eds.), Le Développement du lac Tchad: Situation Actuelle et Futurs Possibles. Expert group review under the IRD supervision and the request of th Lake Chad Basin Commission, Marseille, France, p. 254–311.

  • Riley, W.D., Potter, E.C.E., Biggs, J., Collins, A.L., Jarvie, H.P., Kelly-Quinn, J.J., Iwan, M., Ormerod, S.J., Sear, D.A., Wilby, R.L., Broadmeadow, S., Colin, D., Brown, P.C., Gordon, H., Copp, I.G., Cow, A.G., Hornby, D.D., Huggett D., Kelly, M.G., Naura, M., Newman, J.R., and Siriwardena, G.M., 2018, Small water bodies in Great Britain and Ireland: ecosystem function, human-generated degradation, and options for restorative action. Science of The Total Environment, 645, 1598–1616. https://doi.org/10.1016/j.scitotenv.2018.07.243

    Article  ADS  CAS  PubMed  Google Scholar 

  • Rueedi, J., Purtschert, R., Beyerleb, U., Alberich, C., and Kipfer, R., 2004, Estimating groundwater mixing ratios and their uncertainties using a statistical multi parameter approach. Journal of Hydrology, 305, 1–14. https://doi.org/10.1016/j.jhydrol.2004.06.044

    Article  ADS  Google Scholar 

  • Seeber, K., Daïra, D., Magaji, A.B., and Vassolo, S., 2014, Groundwater quality investigations in the lower Logone floodplain in April–May 2013. Lake Chad Basin: Sustainable Water Management, Consultation of the Lake Chad Basin Commission on Groundwater Management, Federal Ministry for Economic Cooperation and Development, Bonn, Germany, 47 p.

  • Sighomnou, D. and Naah, E., 1997, Gestion des ressources en eau et développement durable. Un exemple dans la province de l’extrêmenord du Cameroun. FRIEND 97-Regional hydrology: concepts and models for sustainable water ressource management. ProceedingsoftheThird International Conference on FRIEND, Poslojna, Slovenia, Sep. 30–Oct. 4, IAHS Publishing, 246, p. 355–363.

  • Sophocleous, M., 2002, Interactions between groundwater and surface water: The state of the science. Hydrogeology Journal, 10, 52–67. https://doi.org/10.1007/s10040-001-0170-8

    Article  ADS  CAS  Google Scholar 

  • Sorlini, S., Palazzini, D., Sieliechi, J.M., and Ngassoum, M.B., 2013, Assessment of physical-chemical drinking water quality in the Log-one valley (Chad-Cameroon). Sustainability, 5, 3060–3076. https://doi.org/10.3390/su5073060

    Article  CAS  Google Scholar 

  • Stober, I. and Bucher K., 1999, Deep groundwater in the crystalline basement of the Black Forest region. Applied Geochemistry, 14, 237–254. https://doi.org/10.1016/S0883-2927(98)00045-6

    Article  ADS  CAS  Google Scholar 

  • Tchameni, R., Sun, F., Dawaï, D., Danra, G., Tékoum, L., Nomo, N.E., Vanderhaeghe, O., Nzolang, C., and Dagroundwateraï, N., 2015, Zircon dating and mineralogy of the Mokong Pan-African magmatic epidote-bearing granite (North Cameroon). International Journal of Earth Sciences, 105, 1811–1830. https://doi.org/10.1007/s00531-015-1276-x

    Article  ADS  Google Scholar 

  • Temga, J.P., Mache, J.R., Madi, A.B., Nguetnkam, J.P., and Bitom, D.L., 2019, Ceramics applications of clay in Lake Chad Basin, central Africa. Applied Clay Science, 171, 118–132. https://doi.org/10.1016/j.clay.2019.02.003

    Article  CAS  Google Scholar 

  • Teng, Y., Hu, B., Zheng, J., Wang, J., Zhai, Y., and Zhu, C., 2018, Water quality responses to the interaction between surface water and groundwater along the Songhua River, NE China. Hydrogeology Journal, 26, 1591–1607. https://doi.org/10.1007/s10040-018-1738-x

    Article  ADS  CAS  Google Scholar 

  • Thomas, I.A., Jordan, P., Mellander, P.E., Shine, O., Uallacháin, D.ó., Creamer, R., McDonald, N.T., Dunlop, P., and Murphy, P.N.C., 2016, Improving the identification of hydrologically sensitive areas using LiDAR DEMs for the delineation and mitigation of critical source areas of diffuse pollution. Science of The Total Environment, 556, 276–290. https://doi.org/10.1016/j.scitotenv.2016.02.183

    Article  ADS  CAS  PubMed  Google Scholar 

  • Tillement, B., 1970, Hydrogéologie du Nord Cameroun. Ph.D. Thesis, Claude Bernard Lyon 1 University, Lyon, Frnace, 302 p.

    Google Scholar 

  • Tóth, J., 1962, A theory of groundwater motion in small drainage basins in central Alberta, Canada. Journal of Geophysical Research, 67, 4375–4388. https://doi.org/10.1029/JZ067i011p04375

    Article  ADS  Google Scholar 

  • Tóth, J., 1963, A theoretical analysis of groundwater flow in small drainage basins. Journal of Geophysical Research, 68, 4795–4812. https://doi.org/10.1029/JZ068i016p04795

    Article  ADS  Google Scholar 

  • Tóth, J., 1966, Mapping and interpretation of field phenomena for groundwater reconnaissance in a prairie environment, Alberta, Canada. Hydrological Sciences Journal, 11, 20–68. https://doi.org/10.1080/02626666609493458

    Google Scholar 

  • Tóth, J., 1970, A conceptual model of the groundwater regime and the hydrogeologic environment. Journal of Hydrology, 10, 164–176. https://doi.org/10.1016/0022-1694(70)90186-1

    Article  ADS  Google Scholar 

  • Tóth, J., 1999, Groundwater as a geologic agent: an overview of the causes, processes, and manifestations. Hydrogeology Journal, 7, 1–14. https://doi.org/10.1007/s100400050176

    Article  ADS  Google Scholar 

  • Vassolo, S., Wilczok, C., Daïra, D., and Magaji, B.A., 2016, Groundwater-surface water interaction in the lower Logone floodplain. Lake Chad Basin: Sustainable Water Management, Consultation of the Lake Chad Basin Commission on Groundwater Management, Federal Ministry for Economic Cooperation and Development, Bonn, Germany, 49 p.

  • WHO, 1993, Guidelines for drinking water quality, volume 1: Recommendations (2nd edition). World Health Organization, Geneva, Swiss, 188 p.

    Google Scholar 

  • Winter, T.C., 1999, Relation of streams, lakes, and wetlands to ground-water flow systems. Hydrogeology Journal, 7, 28–45. https://doi.org/10.1007/s100400050178

    Article  ADS  Google Scholar 

  • Wongsasuluk, P., Chotpantarat, S., Siriwong, W., and Robson, M., 2013, Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environmental Geochemistry and Health, 36, 169–182. https://doi.org/10.1007/s10653-013-9537-8

    Article  PubMed  Google Scholar 

  • Wu, J. and Sun, Z., 2015, Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, mid-west China. Exposure and Health, 8, 311–329. https://doi.org/10.1007/s12403-015-0170-x

    Article  Google Scholar 

  • Wu, X., Ma, T., and Wang, Y., 2020, Surface water and groundwater interactions in wetlands. Journal of Earth Science, 31, 1016–1028. https://doi.org/10.1007/s12583-020-1333-7

    Article  Google Scholar 

  • Yang, L., Song, X., Zhang, Y., Han, D., Zhang, B., and Long, D., 2012, Characterizing interactions between surface water and groundwater in the Jialu River basin using major ion chemistry and stable isotopes. Hydrology Earth System Science, 16, 4265–4277. https://doi.org/10.5194/hess-16-4265-2012

    Article  ADS  CAS  Google Scholar 

  • Yanné, E., Oumarou, A.A., Nde, B.D., and Danwé, R., 2018, Physicochemical and mineralogical characterization of two clay materials of the Far North region of Cameroon (Makabaye, Maroua). Advances in Materials Physics and Chemistry, 8, 378–386. https://doi.org/10.4236/ampc.2018.89025

    Article  ADS  Google Scholar 

  • Yin, S., Wu, W., Liu, H., and Zhe, H.B., 2016, The impact of river infiltration on the chemistry of shallow groundwater in a reclaimed water irrigation area. Journal of Contaminant Hydrology, 193, 1–9. https://doi.org/10.1016/j.jconhyd.2016.08.004

    Article  ADS  CAS  PubMed  Google Scholar 

  • Yuan, R., Wang, M., Wang, S., and Song, X., 2020, Water transfer imposes hydrochemical impacts on groundwater by altering the interaction of groundwater and surface water. Journal of Hydrology, 583, 1–33. https://doi.org/10.1016/j.jhydrol.2020.124617

    Article  Google Scholar 

  • Yuan, R., Wang, S., Wang, P., Song, X., and Tang, C., 2017, Changes in flow and chemistry of groundwater heavily affected by human impacts in the Baiyangdian catchment of the North China Plain. Environmental Earth Sciences, 76, 1–19. https://doi.org/10.1007/s12665-017-6918-9

    Article  CAS  Google Scholar 

  • Zairi, R., 2008, Etude géochimique et hydrodynamique de la nappe phréatique dans la région du Kadzell (Niger) et la région du Bornou (Nigéria), Bassin du Lac Tchad. Ph.D. Thesis, Montpellier-II University, Montpellier, France, 212 p.

    Google Scholar 

  • Zhu, M., Wang, S., Kong, X., Zheng, W., Feng, W., Zhang, X., Yuan, R., Song, X., and Sprenger, M., 2019, Interaction of surface water and groundwater influenced by groundwater over-extraction, waste water discharge and water transfer in Xiong’an new area, China. Water, 11, 1–23. https://doi.org/10.3390/w11030539

    ADS  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the various people who contributed to the publication of this manuscript. We are grateful to Pr. SEBAG David, who agreed to improve the quality of the analysis of the data collected in the field. The authors thank the anonymous reviewers for their suggestions, which helped to improve the quality of the manuscript. The authors are grateful to the “Laboratoire Mixte International en Science de l’Eau” (LAMISE) of the Department of Earth Sciences of the Faculty of Sciences of the University of Ngaoundéré.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmond M. Iwoudam.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwoudam, E.M., Kemgang, T.D., Mvondo, V.Y.E. et al. Interaction between surface waters and the Quaternary shallow alluvial aquifer of Lake Maga downstream: influence of ponds, streams, irrigation canals, and geological features (Far North, Cameroon). Geosci J 28, 227–246 (2024). https://doi.org/10.1007/s12303-023-0043-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-023-0043-4

Key words

Navigation