Skip to main content
Log in

Characterisation of dissolved organic matter in Parisian urban aquatic systems: predominance of hydrophilic and proteinaceous structures

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Understanding the nature of organic matter is a necessary first step in assessing contaminant bioavailability and allowing water supply managers to optimise the treatment train in the aim of providing safe and inexpensive drinking water. This study provides further insight into the composition, structure and functional groups of dissolved organic matter (DOM) (both hydrophobic and hydrophilic) from urban aquatic systems by means of various analytical techniques (DAX-8/XAD-4 fractionation, elemental analysis, UV and FTIR spectroscopies, 13C and 15N isotopic analysis, size exclusion chromatography and Pyrolysis-GC-MS). The analytical range chosen for this study constitutes a powerful tool in the characterisation of DOM in urban water. The inclusion of information from one technique to the next might not only serve as a support to each one, but also as a complement. The DOM fraction from treated effluent and, more generally, DOM from urban water (i.e. receiving treated effluent) display a strong hydrophilic characteristic [i.e. low humic substance (HS) content, low SUVA], along with a high distribution in molecular weights observed by SEC and low average molecular weight. Due to the origin of this DOM, proteinaceous structures constitute the main compounds, as observed by FTIR and Py-GC-MS. Such characteristics (i.e. heterogeneity, low average molecular weight and diverse functional groups, which make up a total of N) could explain that DOM from treated effluent displayed a strong reactive potential metals pollutants as previously demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DEHP:

Diethylhexyl phthalate

DOC:

Dissolved organic carbon

DOM:

Dissolved organic matter

FTIR:

Fourier transformed infrared

HPI:

Hydrophilic

HPO:

Hydrophobic

HS:

Humic substances

NHS:

Non-humic substances

Py-GC-MS:

Pyrolysis associated with gas chromatography and mass spectrometry

RO:

Reverse osmosis

SRFA:

Suwannee River fulvic acid

SEC:

Size exclusion chromatography

SUVA:

Specific ultraviolet absorbance

TPI:

Transphilic

WWTP:

Wastewater treatment plant

References

  • Ackroff K, Lucas F, Sclafani A (2005) Flavor preference conditioning as a function of fat source. Physiol Behav 85(4):448–460

    Article  Google Scholar 

  • Barber LB, Brown GK, Kennedy KR, Leenheer JA, Noyes TI, Rostad CE, Thorn KA (1997) Organic constituents that persist during aquifer storage and recovery of reclaimed water in Los Angeles County, California. In Conjunctive use of water resources: aquifer storage and recovery. Proceedings of the American water resources association symposium, October 19–23, Long Beach, California, pp 261–271

  • Barber LB, Leenheer JA, Noyes TI, Stiles EA (2001) Nature and transformation of dissolved organic matter in treatment wetlands. Environ Sci Technol 35:4805–4816

    Article  Google Scholar 

  • Bracewell JM, Pacey N, Robertson GW (1987) Organic matter in onshore cretaceous chalks and its variations, investigated by pyrolysis-mass spectrometry. J Anal Appl Pyrolysis 10(3):199–213

    Article  Google Scholar 

  • Buerge IJ, Poiger T, Muller MD, Buser H-R (2003) Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environ Sci Technol 37(4):691–700

    Article  Google Scholar 

  • Buffle J (1988) Complexation reactions. In: Masson M, Tyson JF (eds) Aquatic systems: an analytical approach. Ellis Horwood, New York, 692 pp

  • Buzier R, Tusseau-Vuillemin M-H, Mouchel J-M (2006) Evaluation of DGT as a metal speciation tool in wastewater. Sci Total Environ 358:277–285

    Article  Google Scholar 

  • Cabaniss SE, Shuman MS (1988) Copper binding by dissolved organic matter: I. Suwannee River fulvic acid equilibria. Geochim Cosmochim Acta 52(1):185–193

    Article  Google Scholar 

  • Chi F-H, Amy GL (2004) Kinetic study on the sorption of dissolved natural organic matter onto different aquifer materials: the effects of hydrophobicity and functional groups. J Colloid Interf Sci 274(2):380–391

    Article  Google Scholar 

  • Chiavari G, Galletti GC (1992) Pyrolysis/gas chromatography/mass spectrometry of amino acids. J Anal Appl Pyrolysis 24(2):123–137

    Article  Google Scholar 

  • Chin Y-P, Alken G, O’Loughlin E (1994) Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ Sci Technol 28(11):1853–1858

    Article  Google Scholar 

  • Chipasa KB, Mdrzycka K (2008) Characterization of the fate of lipids in activated sludge. J Environ Sci 20(5):536–542

    Article  Google Scholar 

  • Croué JF (2004) Isolation of humic and non-humic nom fractions: structural characterization. Environ Monit Assess 92:193–207

    Article  Google Scholar 

  • Croué JP, Benedetti MF, Violleau D, Leenheer JA (2003) Characterization and copper binding of humic and nonhumic organic matter isolated from the South Platte River: evidence for the presence of nitrogenous binding site. Environ Sci Technol 37(2):328–336

    Article  Google Scholar 

  • Decker M, Ronn B, Jorgensen SS (2000) Thermally assisted in-line methylation and gas chromatography with statistical data analysis for determination of fatty acid distribution and fingerprinting of plant seeds and oils. Eur Food Res Technol 211(5):366–373

    Article  Google Scholar 

  • Deegan LA, Garritt RH (1997) Evidence for spatial variability in estuarine food webs. Mar Ecol Prog Ser 147(1–3):31–47

    Article  Google Scholar 

  • Deines P (1980) The isotopic composition of reduced organic carbon. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry. Elsevier, Amsterdam, pp 329–406

    Google Scholar 

  • Deniro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42(5):495–506

    Article  Google Scholar 

  • Determan H (1968) Gel chromatography, gel filtration, gel permeation, molecular sieves. Springer-Verlag, New York

    Google Scholar 

  • Dignac M-F, Derenne S, Ginestet P, Bruchet A, Knicker H, Largeau C (2000) Determination of structure and origin of refractory organic matter in bio-epurated wastewater via spectroscopic methods. Comparison of conventional and ozonation treatments. Environ Sci Technol 34(16):3389–3394

    Article  Google Scholar 

  • Dignac M-F, Houot S, Derenne S (2006) How the polarity of the separation column may influence the characterization of compost organic matter by pyrolysis-gc/ms. J Anal Appl Pyrolysis 75(2):128–139

    Article  Google Scholar 

  • Drewes JE, Croue JP (2002) New approaches for structural characterization of organic matter in drinking water and wastewater effluents. In: 2nd World Water Congress: drinking water treatment, water science and technology: water supply, pp 1–10

  • Eudy LW, Walla MD, Hudson JR, Morgan SL, Fox A (1985) Gas chromatography–mass spectrometry studies on the occurrence of acetamide, propionamide, and furfuryl alcohol in pyrolyzates of bacteria, bacterial fractions, and model compounds. J Anal Appl Pyrolysis 7(3):231–247

    Article  Google Scholar 

  • Frimmel FH, Abbt-Braun G (1999) Basic characterization of reference nom from central Europe—similarities and differences. Environ Int 25(2–3):191–207

    Article  Google Scholar 

  • Galletti GC, Reeves JB (1992) Pyrolysis/gas chromatography/ion-trap detection of polyphenols (vegetable tannins): preliminary results. Org Mass Spectrom 27(3):226–230

    Article  Google Scholar 

  • Gasperi J, Garnaud S, Rocher V, Moilleron R (2008) Priority pollutants in wastewater and combined sewer overflow. Sci Total Environ 407(1):263–272

    Article  Google Scholar 

  • Gjessing ET (1997) Editorial on the nom typing project. Newsletter no. l/97. Norwegian Institute for Water Research and Agder College, Kristiansand, Norway

  • Guo LD, Zhang JZ, Gueguen C (2004) Speciation and fluxes of nutrients (N, P, Si) from the upper Yukon River. Glob Biogeochem Cycles 18(1):GB1038

    Google Scholar 

  • Hall JA, Kalin RM, Larkin MJ, Allen CCR, Harper DB (1999) Variation in stable carbon isotope fractionation during aerobic degradation of phenol and benzoate by contaminant degrading bacteria. Org Geochem 30(8):801–811

    Article  Google Scholar 

  • Hedges JI, Keil RG, Benner R (1997) What happens to terrestrial organic matter in the ocean? Org Geochem 27(5–6):195–212

    Article  Google Scholar 

  • Her N, Amy G, Park H-R, Song M (2004) Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling. Water Res 38(6):1427–1438

    Article  Google Scholar 

  • Hertkorn N, Claus H, Schmitt-Kopplin P, Perdue EM, Filip Z (2002) Utilization and transformation of aquatic humic substances by autochthonous microorganisms. Environ Sci Technol 36(20):4334–4345

    Article  Google Scholar 

  • Hur J, Schlautman MA (2003) Molecular weight fractionation of humic substances by adsorption onto minerals. J Colloid Interf Sci 264(2):313–321

    Article  Google Scholar 

  • Hyne RV, Pablo F, Julli M, Markich SJ (2005) Influence of water chemistry on the acute toxicity of copper and zinc to the cladoceran Ceriodaphnia cf dubia. Environ Toxicol Chem 24(7):1667–1675

    Article  Google Scholar 

  • Imai A, Fukushima T, Matsushige K, Hwan Kim Y (2001) Fractionation and characterization of dissolved organic matter in a shallow eutrophic lake, its inflowing rivers, and other organic matter sources. Water Res 35(17):4019–4028

    Article  Google Scholar 

  • Imai A, Fukushima T, Matsushige K, Kim Y-H, Choi K (2002) Characterization of dissolved organic matter in effluents from wastewater treatment plants. Water Res 36(4):859–870

    Article  Google Scholar 

  • Ishiwatari R, Yamamoto S, Handa N (1995) Characterization of sinking particles in the ocean by pyrolysis-gas chromatography/mass spectrometry. J Anal Appl Pyrolysis 32:75–89

    Article  Google Scholar 

  • Jarusutthirak C, Amy G, Croué J-P (2000) Fouling characteristics of wastewater effluent organic matter (EfOM) isolates on NF and UF membranes. Desalination 145(1–3):247–255

    Google Scholar 

  • Kalbitz K, Geyer W, Geyer S (1999) Spectroscopic properties of dissolved humic substances—a reflection of land use history in a fen area. Biogeochemistry 47(2):219–238

    Google Scholar 

  • Kendall C (1998) Tracing nitrogen sources and cycling in catchments. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 519–576

    Google Scholar 

  • Kiikkilä O, Kitunen V, Smolander A (2006) Dissolved soil organic matter from surface organic horizons under birch and conifers: degradation in relation to chemical characteristics. Soil Biol Biochem 38(4):737–746

    Article  Google Scholar 

  • Kukkonen J, Oikari A (1991) Bioavailability of organic pollutants in boreal waters with varying levels of dissolved organic material. Water Res 25(4):455–463

    Article  Google Scholar 

  • Lam B, Simpson AJ (2008) Direct H-1 NMR spectroscopy of dissolved organic matter in natural waters. Analyst 133(2):263–269

    Article  Google Scholar 

  • Leenheer JA (1981) Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters. Environ Sci Technol 15(5):578–587

    Article  Google Scholar 

  • Leenheer JA, Croué J-P (2003) Characterized aquatic dissolved organic matter. Environ Sci Technol 37(1):19–26

    Article  Google Scholar 

  • Leenheer JA, Rostad CE (2004) Fractionation and characterization of organic matter in wastewater from a Swine waste-retention basin. Scientific investigations report 2004-5217. U.S. Department of the Interior and U.S. Geological Survey, 21

  • Leenheer JA, Croué JF, Benjamin M, Korshin GV, Hwang CJ, Bruchet A, Aiken GR (2000) Comprehensive isolation of natural organic matter from water for spectral characterizations and reactivity testing. In: ACS symposium series 76, Washington, DC, pp 68–83

  • Leenheer JA, Nanny MA, McIntyre C (2003) Terpenoids as major precursors of dissolved organic matter in landfill leachates, surface water, and groundwater. Environ Sci Technol 37(11):2323–2331

    Article  Google Scholar 

  • Ma H, Allen HE, Yin Y (2001) Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent. Water Res 35(4):985–996

    Article  Google Scholar 

  • Macko SA, Estep MLF (1984) Microbial alteration of stable nitrogen and carbon isotopic compositions of organic matter. Org Geochem 6:787–790

    Article  Google Scholar 

  • Maher KD, Bressler DC (2007) Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresour Technol 98(12):2351–2368

    Article  Google Scholar 

  • Martin-Mousset B, Croué JP, Lefebvre E, Legube B (1997) Distribution et caractérisation de la matière organique dissoute d’eaux naturelles de surface. Water Res 31(3):541–553

    Article  Google Scholar 

  • McDonald S, Bishop AG, Prenzler PD, Robards K (2004) Analytical chemistry of freshwater humic substances. Anal Chim Acta 527(2):105–124

    Article  Google Scholar 

  • McKnight DM, Andrews ED, Spaulding SA, Aiken GR (1994) Aquatic fulvic-acids in algal-rich antarctic ponds. Limnol Oceanogr 39(8):1972–1979

    Article  Google Scholar 

  • Nakata H, Kannan K, Jones PD, Giesy JP (2005) Determination of fluoroquinolone antibiotics in wastewater effluents by liquid chromatography-mass spectrometry and fluorescence detection. Chemosphere 58(6):759–766

    Article  Google Scholar 

  • Nam SN, Amy G (2008) Differentiation of wastewater effluent organic matter (EfOM) from natural organic matter (NOM) using multiple analytical techniques. Water Sci Technol 57(7):1009–1015

    Article  Google Scholar 

  • Ogawa H, Amagai Y, Koike I, Kaiser K, Benner R (2001) Production of refractory dissolved organic matter by bacteria. Science 292(5518):917–920

    Article  Google Scholar 

  • Pernet-coudrier B, Clouzot L, Varrault G, Tusseau-vuillemin M-H, Verger A, Mouchel J-M (2008) Dissolved organic matter from treated effluent of a major wastewater treatment plant: characterization and influence on copper toxicity. Chemosphere 73(4):593–599

    Article  Google Scholar 

  • Peterson BJ, Howarth RW (1987) Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in the salt-march estuaries of Sapelo Island, Georgia. Limnol Oceanogr 32:1195–1213

    Article  Google Scholar 

  • Pettersson C, Rahm L (1996) Changes in molecular weight of humic substances in the Gulf of Bothnia. Environ Int 22(5):551–558

    Article  Google Scholar 

  • Pettersson C, Ephraim J, Allard B (1994) On the composition and properties of humic substances isolated from deep groundwater and surface waters. Org Geochem 21(5):443–451

    Article  Google Scholar 

  • Peuravuori J, Pihlaja K (1997) Molecular size distribution and spectroscopic properties of aquatic humic substances. Anal Chim Acta 337(2):133–149

    Article  Google Scholar 

  • Peuravuori J, Ingman P, Pihlaja K, Koivikko R (2001) Comparisons of sorption of aquatic humic matter by DAX-8 and XAD-8 resins from solid-state 13C NMR spectroscopy’s point of view. Talanta 55(4):733–742

    Article  Google Scholar 

  • Peuravuori J, Lehtonen T, Pihlaja K (2002) Sorption of aquatic humic matter by DAX-8 and XAD-8 resins: comparative study using pyrolysis gas chromatography. Anal Chim Acta 471(2):219–226

    Article  Google Scholar 

  • Pouwels AD, Tom A, Eijkel GB, Boon JJ (1987) Characterisation of beech wood and its holocellulose and xylan fractions by pyrolysis-gas chromatography-mass spectrometry. J Anal Appl Pyrolysis 11:417–436

    Article  Google Scholar 

  • Robards K, McKelvie ID, Benson RL, Worsfold PJ, Blundell NJ, Casey H (1994) Determination of carbon, phosphorus, nitrogen and silicon species in waters. Anal Chim Acta 287(3):147–190

    Article  Google Scholar 

  • Roesijadi G (1992) Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat Toxicol 22(2):81–114

    Article  Google Scholar 

  • Saiz-Jimenez C, De Leeuw JW (1986) Lignin pyrolysis products: their structures and their significance as biomarkers. Org Geochem 10(4–6):869–876

    Article  Google Scholar 

  • Sarathy V, Allen HE (2005) Copper complexation by dissolved organic matter from surface water and wastewater effluent. Ecotoxicol Environ Saf 61:337–344

    Article  Google Scholar 

  • Schell DM, Barnett BA, Vinette KA (1998) Carbon and nitrogen isotope ratios in zooplankton of the Bering, Chukchi and Beaufort seas. Mar Ecol Prog Ser 162:11–23

    Article  Google Scholar 

  • Schindler DW, Curtis PJ, Bayley SE, Parker BR, Beaty KG, Stainton MP (1997) Climate-induced changes in the dissolved organic carbon budgets of boreal lakes. Biogeochemistry 36(1):9–28

    Article  Google Scholar 

  • Schnitzer MI, Monreal CM, Jandl G, Leinweber P, Fransham PB (2007) The conversion of chicken manure to biooil by fast pyrolysis II. Analysis of chicken manure, biooils, and char by curie-point pyrolysis-gas chromatography/mass spectrometry (Cp Py-GC/MS). J Environ Sci Health B 42(1):79–95

    Article  Google Scholar 

  • Sinninghe Damsté JS, Eglinton TI, de Leeuw JW (1992) Alkylpyrroles in a kerogen pyrolysate: evidence for abundant tetrapyrrole pigments. Geochim Cosmochim Acta 56(4):1743–1751

    Article  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions. Wiley, New York, 496 pp

  • Swietlik J, Sikorska E (2006) Characterization of natural organic matter fractions by high pressure size-exclusion chromatography, specific UV absorbance and total luminescence spectroscopy. Polish J Environ Stud 15(1):145–153

    Google Scholar 

  • Tatzber M, Stemmer M, Spiegel H, Katzlberger C, Haberhauer G, Gerzabek MH (2007) An alternative method to measure carbonate in soils by FT-IR spectroscopy. Environ Chem Lett 5(1):9–12

    Article  Google Scholar 

  • Templetona AS, Chub K-H, Alvarez-Cohenb L, Conradd ME (2006) Variable carbon isotope fractionation expressed by aerobic CH4-oxidizing bacteria. Geochim Cosmochim Acta 70(7):1739–1752

    Article  Google Scholar 

  • Thingstad TF (2003) Physiological models in the context of microbial food webs. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic ecosystems. interactivity of dissolved organic matter. Academic Press, Burlington, pp 383–397

    Google Scholar 

  • Tsuge S, Matsubara H (1985) High-resolution pyrolysis-gas chromatography of proteins and related materials. J Anal Appl Pyrolysis 8:49–64

    Article  Google Scholar 

  • van Bergen PF, Collinson ME, De Leuw JW (1996) Anc Biomol 1:55–65

    Google Scholar 

  • Vartiainen T, Liimatainen A, Kauranen P (1987) The use of TSK size exclusion columns in determination of the quality and quantity of humus in raw waters and drinking waters. Sci Total Environ 62:75–84

    Article  Google Scholar 

  • Violleau D (1999).Intérêt du fractionnement et de l’extraction des matières organiques naturelles d’eaux de surface pour l’étude de leur propriétés structurales et de leur pouvoir complexant vis-à-vis du cuivre. Laboratoire de chimie de l’eau et de l’environnement, Université de Poitiers, 159 pp

  • Voorhees KJ, DeLuca SJ, Noguerola A (1992) Identification of chemical biomarker compounds in bacteria and other biomaterials by pyrolysis—tandem mass spectrometry. J Anal Appl Pyrolysis 24(1):1–21

    Article  Google Scholar 

  • Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37(20):4702–4708

    Article  Google Scholar 

  • Wiegner TN, Seitzinger SP (2001) Photochemical and microbial degradation of external dissolved organic matter inputs to rivers. Aquat Microb Ecol 24(1):27–40

    Article  Google Scholar 

  • Wilson MA, Philp RP, Gillam AH, Gilbert TD, Tate KR (1983) Comparison of the structures of humic substances from aquatic and terrestrial sources by pyrolysis gas chromatography–mass spectrometry. Geochim Cosmochim Acta 47(3):497–502

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Paris Metropolitan Wastewater Authority (SIAAP) for providing access to the sampling site. Gratitude is also addressed to David Violleau for his valuable assistance in DOM fractionation, and to Leslie Curie for her technical assistance and the French Ministry of Research and Higher Education for its financial support in the form of a Ph.D. grant awarded to Benoît Pernet-Coudrier. This research work has also been financed by the French National Research Agency (ANR), as part of the BIOMET JC05_59809 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Varrault.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pernet-Coudrier, B., Varrault, G., Saad, M. et al. Characterisation of dissolved organic matter in Parisian urban aquatic systems: predominance of hydrophilic and proteinaceous structures. Biogeochemistry 106, 89–106 (2011). https://doi.org/10.1007/s10533-010-9480-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-010-9480-z

Keywords

Navigation