Skip to main content

Advertisement

Log in

Functional and phylogenetic diversity of cultivable rhizobacterial endophytes of sorghum [Sorghum bicolor (L.) Moench]

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A diverse group of bacteria colonize the exo- and endo-rhizospheres of sorghum and play a critical role in its tolerance to drought and other abiotic stresses. Two hundred and eighty endophytic bacteria were isolated from the surface-sterilized roots of four sorghum cultivars that were grown on three soil types at three different phenological stages of growth. The isolates were subjected to in vitro screening for their plant growth promoting traits. Out of 280 isolates, 70 could produce Indole 3-Acetic Acid (IAA), 28 showed N-fixation, 28 could solubilize phosphate, 24 had ACC deaminase activity and 13 isolates were able to produce siderophores. Functional diversity grouping of the isolates indicated one isolate having five PGP traits and two isolates having four PGP traits; two and 29 isolates having three and two PGP traits, respectively. Among the thirty-four isolates that possessed multiple PGP traits, 19 and 17 isolates were able to produce significant quantities of IAA in the presence and absence of l-tryptophan, an inducer. Eight isolates possessed high levels of ACC deaminase activity. PCR–RFLP of the 16Sr RNA gene revealed a distinct clustering and considerable genetic diversity among these functionally characterized isolates. The 16S rRNA gene based identification of the isolates of single and multiple PGP traits revealed phylogenetic dominance of Firmicutes; Acinetobacter, Bacillus, Enterobacter, Geobacillus, Lysinibacillus, Microbacterium, Ochrobactrum, Paenibacillus and Pseudomonas were the major genera present in the endo-rhizosphere of sorghum. Results of this study are constructive in selection of effective rhizobacterial endophytes or consortia for drought stress alleviation in sorghum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali SZ, Sandhya V, Grover M, Kishore N, Rao LV, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fert Soils 46(1):45–55

    Article  CAS  Google Scholar 

  • Andrews M, James EK, Cummings SP, Zavalin AA, Vinogradova LV, McKenzie BA (2003) Use of nitrogen fixing bacteria inoculants as a substitute for nitrogen fertiliser for dryland graminaceous crops: progress made, mechanisms of action and future potential. Symbiosis 35:209–229

    CAS  Google Scholar 

  • Bednarek P, Kwon C, Schulze-Lefert P (2010) Not a peripheral issue: secretion in plant–microbe interactions. Curr Opin Plant Biol 13(4):378–387

    Article  CAS  PubMed  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotech 84:11–18

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotech 28(4):1327–1350

    Article  CAS  Google Scholar 

  • Blaha D, Prigent-Combaret C, Mirza MS, Moënne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56(3):455–470

    Article  CAS  PubMed  Google Scholar 

  • Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol Sci 27:30–37

    Article  CAS  Google Scholar 

  • Brick JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indole acetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57(2):535–538

    Google Scholar 

  • Budi SW, van Tuinen D, Martinotti G, Gianinazzi S (1999) Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soil-borne fungal pathogens. Appl Environ Microbiol 65(11):5148–5550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charles TC, Nester EW (1993) A chromosomally encoded two-component sensory transduction system is required for virulence of Agrobacterium tumefaciens. J Bacteriol 175(20):6614–6625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiarini L, Bevivino A, Dalmastri C, Nacamulli C, Tabacchioni S (1998) Influence of plant development, cultivar and soil type on microbial colonization of maize roots. Appl Soil Ecol 8:11–18

    Article  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678

    Article  CAS  Google Scholar 

  • Conn VM, Franco CMM (2004) Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length poly-morphism and sequencing of 16S rRNA clones. Appl Environ Microbiol 70:1787–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dicko MH, Gruppen H, Traoré AS, Voragen AG, van Berkel WJ (2006) Sorghum grain as human food in Africa: relevance of starch content and amylase activities. Afr J Biotechnol 5:384–395

    CAS  Google Scholar 

  • Dimkpa CO, Svatoš A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74(1):19–25

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa C, Merten D, Svatos A, Buchel G, Kothe E (2009) Siderophores mediate reducedand increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annulus), respectively. J Appl Microbiol 107:1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Dimpka C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32(12):1682–1694

    Article  Google Scholar 

  • Dworkin M, Foster JW (1958) Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol 75(5):592–601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36(2):184–189

    Article  Google Scholar 

  • Frey-Klett P, Chavatte M, Clausse ML, Courrier S, Roux CL, Raaijmakers J, Martinotti MG, Pierrat J, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165(1):317–328

    Article  PubMed  Google Scholar 

  • Funnell-Harris DL, Sattler SE, Pedersen JF (2013) Characterization of fluorescent Pseudomonas spp. associated with roots and soil of two sorghum genotypes. Eur J Plant Pathol 36(3):469–481

    Article  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. In: Bakker PAHM, Raaijmakers JM, Bloemberg G, Höfte M, Lemanceau P, Cooke BM (eds) New perspectives and approaches in plant growth-promoting rhizobacteria research. Springer, Dordrecht, pp 329–339

    Chapter  Google Scholar 

  • GOI (2014) Agriculture statistics 2013–2014 at a glance. Directorate of Economics and Statistics. New Delhi, India: Ministry of Agriculture, Government of India

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indole acetic acid. Plant Physiol 26(1):192–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goswami D, Dhandhukia P, Patel P, Thakker JN (2014) Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 169(1):66–75

    Article  CAS  PubMed  Google Scholar 

  • Govindasamy V, Senthilkumar M, Mageshwaran V, Annapurna K (2009) Detection and characterization of ACC deaminase in plant growth promoting rhizobacteria. J Plant Biochem Biotech 18:71–76

    Article  CAS  Google Scholar 

  • Govindasamy V, Senthilkumar M, Magheshwaran V, Kumar U, Bose P, Sharma V (2011) Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Microbiology monographs, vol 18. Springer, Berlin, pp 333–364

    Chapter  Google Scholar 

  • Govindasamy V, Franco CM, Gupta VV (2014) Endophytic actinobacteria: diversity and ecology. In: Verma VC, Gange A (eds) Advances in endophytic research. Springer, Germany, pp 27–59

    Chapter  Google Scholar 

  • Govindasamy V, Senthilkumar M, Annapurna K (2015) Effect of mustard rhizobacteria on wheat growth promotion under cadmium stress: characterization of acdS gene coding ACC deaminase. Ann Microbiol 65(3):1679–1687

    Article  CAS  Google Scholar 

  • Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32(2):245–258

    Article  CAS  Google Scholar 

  • Hafeez FY, Yasmin S, Ariani D, Zafar Y, Malik KA (2006) Plant growth-promoting bacteria as biofertilizer. Agron Sustain Dev 26(2):143–150

    Article  CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598

    Article  Google Scholar 

  • Hirsch PR, Mauchline TH (2012) Who’s who in the plant root microbiome? Nat Biotechnol 30(10):961–962

    Article  CAS  PubMed  Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of l-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42:1825–1831

    CAS  Google Scholar 

  • Idris EE, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbe Inter 20(6):619–626

    Article  CAS  Google Scholar 

  • Islam SMA, Math RK, Kim JM, Yun MG, Cho JJ, Kim EJ, Lee YH, Yun HD (2010) Effect of plant age on endophytic bacterial diversity of balloon flower (Platycodon grandiflorum) root and their antimicrobial activities. Curr Microbiol 61(4):346–356

    Article  Google Scholar 

  • James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res 65:197–209

    Article  Google Scholar 

  • Ji SH, Gururani MA, Chun SC (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169(1):83–98

    Article  CAS  PubMed  Google Scholar 

  • Kennedy IR, Choudhury ATMA, Kecskes ML (2004) Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol Biochem 36:1229–1244

    Article  CAS  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96(3):473–480

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathol 94:1259–1266

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–176

    Google Scholar 

  • Leveau JH, Lindow SE (2005) Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol 71(5):2365–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Chang S, Lin L, Li Y, An Q (2011) A colorimetric assay of 1-aminocyclopropane-1-carboxylate (ACC) based on ninhydrin reaction for rapid screening of bacteria containing ACC deaminase. Lett Appl Microbiol 53(2):178–185

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  • Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, Ayman FA, El-Behairy UA, Sorlini C, Cherif A, Zocchi G, Daffonchio D (2012) Drought resistance-promoting microbiome is selected by root system under desert farming. PLoS ONE 7(10):e48479. doi:10.1371/journal.pone.0048479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masterson RV, Prakash RK, Atherly AG (1985) Conservation of symbiotic nitrogen fixation gene sequences in Rhizobium japonicum and Bradyrhizobium japonicum. J Bacteriol 163(1):21–26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Onofre-Lemus J, Hernández-Lucas I, Girard L, Caballero-Mellado J (2009) ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl Environ Microbiol 75(20):6581–6590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen WL, Chakrabarty K, Klucas RV, Vidaver AK (1978) Nitrogen fixation (acetylene reduction) associated with roots of winter wheat and sorghum in Nebraska. Appl Environ Microbiol 35(1):129–135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118(1):10–15

    Article  CAS  PubMed  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologya 17:362–370

    CAS  Google Scholar 

  • Ramond JB, Tshabuse F, Bopda CW, Cowan DA, Tuffin MI (2013) Evidence of variability in the structure and recruitment of rhizospheric and endophytic bacterial communities associated with arable sweet sorghum (Sorghum bicolor (L) Moench). Plant Soil. doi:10.1007/s11104-013-1737-6

    Google Scholar 

  • Ramos Solano B, Barriuso Maicas J, Pereyra De La Iglesia MT, Domenech J, Gutiérrez Mañero FJ (2008) Systemic disease protection elicited by plant growth promoting rhizobacteria strains: relationship between metabolic responses, systemic disease protection, and biotic elicitors. Phytopathol 98(4):451–457

    Article  CAS  Google Scholar 

  • Rao PP, Basavaraj G, Ahmed W, Bhagavatula S (2010) An analysis of availability and utilization of sorghum grain in India. SAT eJ 8:1–6

    Google Scholar 

  • Rasche F, Trondl R, Naglreiter C, Reichenauer TG, Sessitsch A (2006a) Chilling and cultivar type affect the diversity of bacterial endophytes colonizing sweet pepper (Capsicum anuum L.). Can J Microbiol 52:1036–1045

    Article  CAS  PubMed  Google Scholar 

  • Rasche F, Velvis H, Zachow C, Berg G, van Elsas JD, Sessitsch A (2006b) Impact of transgenic potatoes expressing antibacterial agents on bacterial endophytes is comparable to ef-fects of wild type potatoes and changing environmental conditions. J Appl Ecol 43:555–566

    Article  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14(4):435–443

    Article  PubMed  Google Scholar 

  • Reiter B, Sessitsch A (2006) Bacterial endophytes of the wildflower Crocus albiflorus analyzed by characterization of isolates and by a cultivation-independent approach. Can J Microbiol 52(2):140–149

    Article  CAS  PubMed  Google Scholar 

  • Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 68(5):2261–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their Interactions with hosts. Mol Plant Microbe Interact 19(8):827–837

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, London

    Google Scholar 

  • Schenk PM, Carvalhais LC, Kazan K (2012) Unraveling plant–microbe interactions: can multi-species transcriptomics help? Trends Biotechnol 30:177–184

    Article  CAS  PubMed  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Ann Biochem 160(1):47–56

    Article  CAS  Google Scholar 

  • Seghers D, Wittebolle L, Top EM, Verstraete W, Siciliano SD (2004) Impact of agricultural practices on the Zea mays L. endophytic community. Appl Environ Microbiol 70(3):1475–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39(1):23–32

    Article  CAS  PubMed  Google Scholar 

  • Shah S, Li J, Moffatt BA, Glick BR (1998) Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can J Microbiol 44(9):833–843

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Okon Y (2009) Plant growth-promoting actions of rhizobacteria. Adv Bot Res 51:283–320

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their in£uence on host growth. Biol Fertil Soils 25:13–19

    Article  Google Scholar 

  • Sukweenadhi J, Kim YJ, Choi ES, Koh SC, Lee SW, Kim YJ, Yang DC (2015) Paenibacillus yonginensis DCY84 T induces changes in Arabidopsis thaliana gene expression against aluminum, drought, and salt stress. Microbiol Res 172:7–15

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Trivedi P, Spann T, Wang N (2011) Isolation and characterization of beneficial bacteria associated with citrus roots in Florida. Microbial Ecol 62(2):324–336

    Article  CAS  Google Scholar 

  • Vasconcellos RLFD, Silva MCPD, Ribeiro CM, Cardoso EJBN (2010) Isolation and screening for plant growth-promoting (PGP) actinobacteria from Araucaria angustifolia rhizosphere Soil. Sci Agr 67(6):743–746

    Article  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Yao AV, Bochow H, Karimov S, Boturov U, Sanginboy S, Sharipov K (2006) Effect of FZB24 Bacillus subtilis as a biofertilizer on cotton yields in field tests. Arch Phytopathol Plant Prot 39:1–6

    Article  Google Scholar 

  • Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68(5):2198–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

First author thanks the Officer in-charge, sorghum improvement project, MPKV, Rahuri for providing seeds of sorghum cultivars and Dr. G. Selvakumar, ICAR-Indian Institute of Horticulture Research, Bangaluru, India, for critically going through the manuscript. We are grateful to the Director, ICAR-National Institute of Abiotic Stress Management, Baramati for providing necessary laboratory facilities. Authors are also thankful to Indian Council of Agricultural Research, New Delhi for funding in the form of an institutional project (Project Ref. No.: IXX08578). Authors gratefully acknowledge the help rendered by Mr. Albert Maibam, ICAR-NRCPB, New Delhi, India in refining pictures and figures arrangements in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkadasamy Govindasamy.

Ethics declarations

Conflict of interest

The authors of this manuscript declare that they do not have any conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 1345 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govindasamy, V., Raina, S.K., George, P. et al. Functional and phylogenetic diversity of cultivable rhizobacterial endophytes of sorghum [Sorghum bicolor (L.) Moench]. Antonie van Leeuwenhoek 110, 925–943 (2017). https://doi.org/10.1007/s10482-017-0864-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-017-0864-0

Keywords

Navigation