Skip to main content

Advertisement

Log in

Bacillus subtilis EA-CB0575 genome reveals clues for plant growth promotion and potential for sustainable agriculture

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Bacillus subtilis is a remarkably diverse bacterial species that displays many ecological functions. Given its genomic diversity, the strain Bacillus subtilis EA-CB0575, isolated from the rhizosphere of a banana plant, was sequenced and assembled to determine the genomic potential associated with its plant growth promotion potential. The genome was sequenced by Illumina technology and assembled using Velvet 1.2.10, resulting in a whole genome of 4.09 Mb with 4332 genes. Genes involved in the production of indoles, siderophores, lipopeptides, volatile compounds, phytase, bacilibactin, and nitrogenase were predicted by gene annotation or by metabolic pathway prediction by RAST. These potential traits were determined using in vitro biochemical tests, finding that B. subtilis EA-CB0575 produces two families of lipopeptides (surfactin and fengycin), solubilizes phosphate, fixes nitrogen, and produces indole and siderophores compounds. Finally, strain EA-CB0575 increased 34.60% the total dry weight (TDW) of tomato plants with respect to non-inoculated plants at greenhouse level. These results suggest that the identification of strain-specific genes and predicted metabolic pathways might explain the strain potential to promote plant growth by several mechanisms of action, accelerating the development of plant biostimulants for sustainable agricultural.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad Z, Wu J, Chen L, Dong W (2017) Isolated Bacillus subtilis strain 330-2 and its antagonistic genes identified by the removing PCR. Sci Rep 7:1777. https://doi.org/10.1038/s41598-017-01940-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Accessed 29 Mar 2018

  • Aziz RK, Bartels D, Best AA, De Jongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aznar A, Dellagi A (2015) New insights into the role of siderophores as triggers of plant immunity: what can we learn from animals? J Exp Bot 66(11):3001–3010

    Article  CAS  PubMed  Google Scholar 

  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473. https://doi.org/10.3389/fpls.2018.01473

    Article  PubMed  PubMed Central  Google Scholar 

  • Barazani O, Friedman J (1999) Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J Chem Ecol 25(10):2397–2406

    Article  CAS  Google Scholar 

  • Bashan Y, Kamnew A, De-Bashan LE (2013) Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biol Fertil Soils 49:465–479

    Article  CAS  Google Scholar 

  • Bazinet AL, Zwickl DJ, Cummings MP (2014) A gateway for phylogenetic analysis powered by grid computing featuring GARLI 2.0. Syst Biol 63(5):812–818

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai J, Liu F, Liao X, Zhang R (2014) Complete genome sequence of Bacillus amyloliquefaciens LFB112 isolated from chinese herbs, a strain of a broad inhibitory spectrum against domestic animal pathogens. J Biotechnol 10(175):63–64

    Article  CAS  Google Scholar 

  • Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L, Fischer B, Pratt B, Egertson J, Hoff K, Kessner D, Tasman N, Shulman N, Frewen B, Baker TA, Brusniak MY, Paulse C, Creasy D, Flashner L, Kani K, Moulding C, Seymour SL, Nuwaysir LM, Lefebvre B, Kuhlmann F, Roark J, Rainer P, Detlev S, Hemenway T, Huhmer A, Langridge J, Connolly B, Chadick T, Holly K, Eckels J, Deutsch EW, Moritz RL, Katz JE, Agus DB, MacCoss M, Tabb DL, Mallick P (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotech 30(10):918–920

    Article  CAS  Google Scholar 

  • Chen X, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess W, Reva O, Junge H, Voigt B, Jungblut P, Vater J, Sussmuth R, Liesegang H, Strittmatter A, Gottschalk G, Borriss R (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25(9):1007–1014

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury SP, Hartmann A, Gao X, Borriss R (2015) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 – a review. Fron Microbiol 6(780):1–11

    Google Scholar 

  • Compeau PEC, Pevzner PA, Tesler G (2011) How to apply de Bruijn graphs to genome assembly. Nat Biotech 29(11):987–991

    Article  CAS  Google Scholar 

  • Costa F, Sérgio J, Schmitt K, de Oliveira R, Farias C, da Silva P, Dellagostin O, Galdino F, de Menezes R, de Sousa O, Maggioni R, Marins L (2018) Complete genome sequence of native Bacillus cereus strains isolated from intestinal tract of the crab Ucides sp. Data Brief 16:381–385

    Article  Google Scholar 

  • Deng Y, Zhu Y, Wang P, Zhu L, Zheng J, Li R, Ruan L, Peng D, Sun M (2011) Complete genome sequence of Bacillus subtilis BSn5, an endophytic bacterium of Amorphophallus konjac with antimicrobial activity for the plant pathogen Erwinia carotovora subsp. carotovora. J Bacteriol 193(8):2070–2071. https://doi.org/10.1128/JB.00129-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng Q, Wang R, Sun D et al (2019) Biochem Genet. https://doi.org/10.1007/s10528-019-09927-z

  • Earl AM, Eppinger M, Fricke WF, Rosovotzz MJ, Rasko DA, Daugherty S, Losick R, Kolter R, Ravel J (2012) Whole-genome sequences of Bacillus subtilis and close relatives. J Bacteriol 194(9):2378–2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckert B, Weber OB, Kirchhof G, Halbritter A, Stoffels M, Hartmann A (2001) Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int J Syst Evol Microbiol 51(Pt 1):17–26

  • EPA (Environmental Protection Agency) (2019) Draft guidance for pesticide registrants on plant regulator label claims, including plant biostimulants; notice of availability. Government Publishing Office. https://www.epa.gov/pesticides/epa-releases-public-comment-draft-guidance-plant-regulators-including-plant-biostimulants. Accessed 20 july 2019

  • Fan B, Borriss R, Bleiss W, Wu X (2012) Gram-positive rhizobacterium Bacillus amyloliquefaciens FZB42 colonizes three types of plants in different patterns. J Microbiol 50(1):38–44

    Article  PubMed  Google Scholar 

  • Fan B, Wang C, Song X, Ding X, Wu L, Wu H, Gao X, Borriss R (2018) Bacillus velezensis FZB42 in 2018: the gram-positive model strain for plant growth promotion and biocontrol. Fron Microbiol 9:2491. https://doi.org/10.3389/fmicb.2018.0249

    Article  Google Scholar 

  • Gilbert D (2003) Sequence file format conversion with command-line readseq. Curr Protoc bioinformatics appendix 1, appendix 1E

  • Guo S, Li X, He P, Ho H, Wu Y, He Y (2015) Whole-genome sequencing of Bacillus subtilis XF-1 reveals mechanisms for biological control and multiple beneficial properties in plants. J Ind Microbiol Biotechnol 42(6):925–937

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Gopal M, Thomas GV, Manikandan V, Gajewski J, Thomas G, Seshagiri S, Schuster SC, Rajesh P, Gupta R (2014) Whole genome sequencing and analysis of plant growth promoting bacteria isolated from the rhizosphere of plantation crops coconut, cocoa and arecanut. PLoS One 9(8):e104259. https://doi.org/10.1371/journal.pone.0104259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez-Monsalve J, Mosquera S, González-Jaramillo L, Mira J, Villegas-Escobar V (2015) Effective control of black Sigatoka disease using a microbial fungicide based on Bacillus subtilis EA-CB0015 culture. Biol Control 87:39–46

    Article  Google Scholar 

  • Idriss EE, Makarewicz OM, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148(Pt 7):2097–2109

    Article  CAS  PubMed  Google Scholar 

  • Ivanova N, Sorokin A, Anderson I, Galleron N, Candelon B, Kapatral V, Bhattacharyya A, Reznik G, Mikhailova N, Lapidus A, Chu L, Mazur M, Goltsman E, Larsen N, D'Souza M, Walunas T, Grechkin Y, Pusch G, Haselkorn R, Fonstein M, Dusko Ehrlich S, Overbeek R, Kyrpides N (2003) Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423(6935):87–91

    Article  CAS  PubMed  Google Scholar 

  • Jacques P, Hbid C, Destain J, Razafindralambo H, Paquot M, De Pawn E, Thonart P (1999) Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by Plackett-Burman Design. Appl Biochem Biotechnol 77(1–3):223–233

    Article  Google Scholar 

  • Kai-Jium L, Shin-Shun L, Chia-Wei L, Chih-Horng K, Chi-Te L (2018) Whole-genome sequencing and comparative analysis of two plant-associated strains of Rhodopseudomonas palustris (PS· and YCS3). Sci Rep 8:12769

    Article  CAS  Google Scholar 

  • Kamada M, Hase S, Fujii K, Miyake M, Sato K, Kimura K, Sakakibara Y (2015) Whole-genome sequencing and comparative genome analysis of Bacillus subtilis strains isolated from non-salted fermented soybean foods. PLoS One 10(10):e0141369. https://doi.org/10.1371/journal.pone.0141369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khatri I, Sharma S, Ramya TNC, Subramanian S (2016) Complete genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, two phylogenetically distinct probiotics. PLoS One 11(6):e0156745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim KY, McDonald GA, Jordan D (1997) Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol Fertil Soils 2(4):347–352

    Article  Google Scholar 

  • Kim BY, Lee SY, Ahn JH, Song J, Kim WG, Weon HY (2015) Complete genome sequence of Bacillus amyloliquefaciens subsp. plantarum CC178, a phyllosphere bacterium antagonistic to plant pathogenic fungi. Genome Announc 3(1):e01368–e01314

    PubMed  PubMed Central  Google Scholar 

  • Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186(4):1084–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Prakash A, Johri BN (2011) Bacillus as PGPR in crop ecosystem. In: Maheshwari D (ed) Bacteria in agrobiology: crop ecosystems. Springer, Berlin

    Google Scholar 

  • Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, CapuanoV CNM, Choi SK, Codani JJ, Connerton IF, Cummings NJ, Daniel RA, Denizot F, Devine KM, Dusterhoft A, Ehrlich SD, Emmerson PT, Entian KD, Errington J, Fabret C, Ferrari E, Foulger D, Fritz C, Fujita M, Fujita Y, Fuma S, Galizzi A, Galleron N, Ghim SY, Glaser P, Goffeau A, Golightly EJ, Grandi G, Guiseppi G, Guy BJ, Haga K, Haiech J, Harwood CR, Henaut A, Hilbert H, Holsappel S, Hosono S, Hullo MF, Itaya M, Jones L, Joris B, Karamata D, Kasahara Y, Klaerr-Blanchard M, Klein C, Kobayashi Y, Koetter P, Koningstein G, Krogh S, Kumano M, Kurita K, Lapidus A, Lardinois S, Lauber J, Lazarevic V, Lee SM, Levine A, Liu H, Masuda S, Mauel C, Medigue C, Medina N, Mellado RP, Mizuno M, Moestl D, Nakai S, Noback M, Noone D, O’Reilly M, Ogawa K, Ogiwara A, Oudega B, Park SH, Parro V, Pohl TM, Portetelle D, Porwollik S, Prescott AM, Presecan E, Pujic P, Purnelle B et al (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390(6657):249–256

    Article  CAS  PubMed  Google Scholar 

  • Lanfear R, Calcott B, Kainer D, Mayer C, Stamatakis A (2014) Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol Biol 14(1):1–14

    Article  Google Scholar 

  • Lemessa F, Zeller W (2007) Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biol Control 42:336–344

    Article  Google Scholar 

  • Li Q, Xu LZ, Zou T, Ai P, Huang GH, Li P, Zheng AP (2015) Complete genome sequence of Bacillus thuringiensis strain HD521. Stand in Genomic Sci 10:62. https://doi.org/10.1186/s40793-015-0058-1

    Article  CAS  Google Scholar 

  • Li XX, Liu Q, Liu XM, Shi HW, Chen SF (2016) Using synthetic biology to increase nitrogenase activity. Microb Cell Factories 20(1):15–43

    Google Scholar 

  • Li P, Tian W, Jiang Z, Liang Z, Wu X, Du B (2018) Genomic characterization and probiotic potency of Bacillus sp. DU-106, a highly effective producer of L-lactic acid isolated from fermented yogurt. Fron Microbiol 9:2216. https://doi.org/10.3389/fmicb.2018.02216

    Article  Google Scholar 

  • Liu H, Yin S, An L, Zhang G, Cheng H, Xi Y, Cui G, Zhang F, Zhang L (2017) Complete genome sequence of Bacillus subtilis BSD-2, a microbial germicide isolated from cultivated cotton. J Biotechnol 230:26–27

    Article  CAS  Google Scholar 

  • Liu Y, Lai Q, Shao Z (2018) Genome analysis-based reclassification of Bacillus weihenstephanensis as a later heterotypic synonym of Bacillus mycoides. Int J Syst Evol Microbiol 68(1):106–112

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2011) CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39(Database issue):D225–D229

    Article  CAS  PubMed  Google Scholar 

  • Md. Anisur R, Md. Sanaullah N, Md. Anayet H, Md. Rakib U, Md. Hafijur R, Md. Amzad H, Yeasmeen A, Md. Saiful I (2014) Identification of potential drug targets by subtractive genome analysis of Bacillus anthracis A0248: an in-silico approach. Comput Biol Chem 52:66–72

    Article  CAS  Google Scholar 

  • Moszer I (1998) The complete genome of Bacillus subtilis: from sequence annotation to data management and analysis. FEBS Lett 430(1–2):28–36

    Article  CAS  PubMed  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nederbragt AJ, Rounge TB, Kausrud KL, Jakobsen KS (2010) Identification and quantification of genomic repeats and sample contamination in assemblies of 454 pyrosequencing reads. Sequencing 2010, Article ID 782465, 12 pages

  • Nye TM, Schroeder JW, Kearns DB, Simmons LA (2017) Complete genome sequence of undomesticated Bacillus subtilis strain NCIB 3610. Genome Announc 5(20):e00364–e00317

    Article  PubMed  PubMed Central  Google Scholar 

  • Patten CL, Glick BR (2002) Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Can J Microbiol 48(7):635–642

    Article  CAS  PubMed  Google Scholar 

  • Pengfei G, Guoqiang Y, Weichen B, Jing L, Heping Z, Wenyi Z (2015) Complete genome sequence of Bacillus licheniformis BL-09, a probiotic strain isolated from naturally fermented congee. J Biotechnol 206:58–59

    Article  CAS  Google Scholar 

  • Pereira FL, Júnior CAO, Silva RO, Dorella FA, Carvalho AF, Almeida GM, Lobato F, Figueiredo HC (2016). Complete genome sequence of Peptoclostridium difficile strain Z31. Gut pathogens 8(1):11

  • Popendorf K, Tsuyoshi H, Osana Y, Sakakibara Y (2010) Murasaki: a fast, parallelizable algorithm to find anchors from multiple genomes. PLoS One 5(9):e12651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Posada LF, Ramírez M, Ochoa-Gómez N, Cuellar-Gaviria TZ, Argel-Roldan LE, Ramírez CA, Villegas-Escobar V (2016) Bioprospecting of aerobic endospore-forming bacteria with biotechnological potential for growth promotion of banana plants. Sci Hortic 212:81–90

    Article  Google Scholar 

  • Posada LF, Álvarez JC, Romero-Tabarez M, de-Bashan L, Villegas-Escobar V (2018) Enhanced molecular visualization of root colonization and growth promotion by Bacillus subtilis EA-CB0575 in different growth systems. Microbiol Res 217:69–80

    Article  CAS  PubMed  Google Scholar 

  • Qi G, Kang Y, Li L, Xiao A, Zhang S, Wen Z, Xu D, Chen S (2014) Deletion of meso 2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis. Biotechnol Biofuels 7(1):16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rahimi T, Niazi A, Deihimi T, Taghavi S, Ayatollahi S, Ebrahimie E (2018) Genome annotation and comparative genomic analysis of Bacillus subtilis MJ01, a new bio-degradation strain isolated from oil-contaminated soil. Funct Integr Genomics 18:533–543

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A (2014) FigTree 1.4.1. http://tree.bio.ed.ac.uk/software/figtree/. Accessed 1 June 2018

  • Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Rooney AP, Price NP, Ehrhardt C, Swezey JL, Bannan JD (2009) Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov. Int J Syst Evol Microbiol 59(Pt 10):2429–2436

    Article  CAS  PubMed  Google Scholar 

  • Rückert C, Blom J, Chen X, Reva O, Borriss R (2011) Genome sequence of B. amyloliquefaciens type strain DSM7(T) reveals differences to plant-associated B. amyloliquefaciens FZB42. J Biotechnol 20(155):78–85

    Article  CAS  Google Scholar 

  • Schroeder JW, Simmons LA (2013) Complete genome sequence of Bacillus subtilis strain PY79. Genome Announc 1(6):e01085–e01013

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56

    Article  CAS  PubMed  Google Scholar 

  • Shaligram S, Kumbhare SV, Dhotre DP, Muddeshwar M, Kapley A, Joseph N, Purohit H, Shouche Y, Pawar S (2016) Genomic and functional features of the biosurfactant producing Bacillus sp. AM13. Funct Integr Genomics 16:557–566

    Article  CAS  PubMed  Google Scholar 

  • Smith JL, Goldberg JM, Grossman AD (2014) Complete genome sequences of Bacillus subtilis subsp. subtilis laboratory strains JH642 (AG174) and AG1839. Genome Announc 2(4). https://doi.org/10.1128/genomeA.00663-14

  • Stein LD, Mungall C, Shu S et al (2002) The generic genome browser: a building block for a model organism system database. Genome Res 12(10):1599–1610. https://doi.org/10.1101/gr.403602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens MJ, Tasara T, Klumpp J, Stephan R, Ehling-Schulz M, Johler S (2019). Whole-genome-based phylogeny of Bacillus cytotoxicus reveals different clades within the species and provides clues on ecology and evolution. Sci Rep 9(1):1–14

  • Sukumaran J, Holder MT (2010) DendroPy: a Python library for phylogenetic computing. Bioinformatics 26(12):1569–1571

    Article  CAS  PubMed  Google Scholar 

  • Sulthana A, Lakshmi SG, Madempudi RS (2019) Genome sequencing and annotation of Bacillus subtilis UBBS-14 to ensure probiotic safety. J Genomics 29(7):14–17

    Article  Google Scholar 

  • Talavera S, Bustamante E, Gonzales R, Sánchez V (1998) Selección y evaluación en laboratorio y campo de microorganismos glucanolíticos antagonistas a Mycosphaerella fijiensis. Manejo Integrado Plagas 47:24–30

    Google Scholar 

  • Tirumalai MR, Rastogi R, Zamani N, O’Bryant Williams E, Allen S et al (2013) Candidate genes that may be responsible for the unusual resistances exhibited by Bacillus pumilus SAFR-032 spores. PLoS One 8(6):e66012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulyanova V, Shah Mahmud R, Malanin S, Vershinina V, Ilinskaya O (2016) Improving Bacillus altitudinis B-388 genome scaffolding using mate-pair next-generation sequencing. BioNanoScience 7(1):85–87

    Article  Google Scholar 

  • Veening JW, Kuipers OP, Brul S, Hellingwerf KJ, Kort R (2006) Effects of phosphorelay perturbations on architecture, sporulation, and spore resistance in biofilms of Bacillus subtilis. J Bacteriol 188(8):3099–3109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veith B, Herzberg C, Steckel S, Feesche J, Maurer KH, Ehrenreich P, Bäumer S, Henne A, Liesegang H, Merkl R, Ehrenreich A, Gottschalk G (2004) The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J Mol Microbiol Biotechnol 7:204–211

    Article  CAS  PubMed  Google Scholar 

  • Villegas-Escobar V, Ceballos I, Mira JJ, Argel LE, Orduz Peralta S, Romero-Tabarez M (2013) Fengycin C produced by Bacillus subtilis EA-CB0015. J Nat Prod 76:503–509

    Article  CAS  PubMed  Google Scholar 

  • Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 9:174. https://doi.org/10.1186/1471-2180-9-174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wernersson R, Pedersen AG (2003) RevTrans: multiple alignment of coding DNA from aligned amino acid sequences. Nucleic Acids Res 31(13):3537–3539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeigler DR (2011) The genome sequence of Bacillus subtilis subsp. spizizenii W23: insights into speciation within the B. subtilis complex and into the history of B. subtilis genetics. Microbiology 157(Pt 7):2033–2041

    Article  CAS  PubMed  Google Scholar 

  • Zeigler DR, Prágai Z, Rodriguez S, Chevreux B, Muffler A, Albert T, Perkins JB (2008) The origins of 168, W23, and other Bacillus subtilis legacy strains. J Bacteriol 190(21):6983–6995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhaohui X, Yan J, Danhua Q, Huaibao L, Fan Y, Jian Y, Lihong C, Lilian S, Xingye X, Ying X, Yafang Z, Qi J (2009). Complete genome sequence of the extremophilic Bacillus cereus strain Q1 with industrial applications. J Bacterio 191(3):1120-1121

  • Zheng-Bing G, Yu-Jie C, Yan-Zhou Z, Hong Z, Xiang-Ru L (2015) Complete genome sequence of Bacillus pumilus W3: a strain exhibiting high laccase activity. J Biotechnol 207:8–9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge supercomputing resources made available by the Centro de Computación Científica Apolo at Universidad EAFIT (http://www.eafit.edu.co/apolo). This research was made possible by the Subscribe Contract Numbers 166 and 139 from 2017 with the Ministerio de Medio Ambiente y Desarrollo Territorial in the category “Contrato de Acceso a Recursos Genéticos y Productos Derivados para la Investigación Científica” and “Contrato de Acceso a Recursos Genéticos y Productos Derivados con Fines Comerciales,” respectively.

Funding

This study was financially supported by the Universidad EAFIT, the Association of Banana Growers of Colombia (AUGURA) and Colciencias (contract number 0836-2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier C. Álvarez.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 799 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco-Sierra, N.D., Posada, L.F., Santa-María, G. et al. Bacillus subtilis EA-CB0575 genome reveals clues for plant growth promotion and potential for sustainable agriculture. Funct Integr Genomics 20, 575–589 (2020). https://doi.org/10.1007/s10142-020-00736-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-020-00736-x

Keywords

Navigation