Skip to main content

Advertisement

Log in

Isolation and Characterization of Beneficial Bacteria Associated with Citrus Roots in Florida

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Cultivable diversity of bacteria associated with citrus was investigated as part of a larger study to understand the roles of beneficial bacteria and utilize them to increase the productive capacity and sustainability of agro-ecosystems. Citrus roots from Huanglongbing (HLB) diseased symptomatic and asymptomatic citrus were used in this study. A total of 227 and 125 morphologically distinct colonies were isolated and characterized from HLB asymptomatic and symptomatic trees, respectively. We observed that the frequency of bacterial isolates possessing various plant beneficial properties was significantly higher in the asymptomatic samples. A total of 39 bacterial isolates showing a minimum of five beneficial traits related to mineral nutrition [phosphate (P) solubilization, siderophore production, nitrogen (N) fixation], development [indole acetic acid (IAA) synthesis], health [production of antibiotic and lytic enzymes (chitinase)], induction of systemic resistance [salicylic acid (SA) production], stress relief [production of 1-amino-cyclopropane-1-carboxylate deaminase] and production of quorum sensing [N-acyl homoserine lactones] signals were characterized. A bioassay using ethidium monoazide (EMA)-qPCR was developed to select bacteria antagonistic to Candidatus Liberibacter asiaticus. Using the modified EMA-qPCR assay, we found six bacterial isolates showing maximum similarity to Paenibacillus validus, Lysinibacillus fusiformis, Bacillus licheniformis, Pseudomonas putida, Microbacterium oleivorans, and Serratia plymutica could significantly reduce the population of viable Ca. L. asiaticus in HLB symptomatic leaf samples. In conclusion, we have isolated and characterized multiple beneficial bacterial strains from citrus roots which have the potential to enhance plant growth and suppress diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Andreote FD, Gullo MJM, Lima AOD, Maccheroni W Jr, Azevedo JL, Araujo WL (2004) Impact of genetically modified Enterobacter cloacae on indigenous endophytic community of Citrus sinensis seedlings. J Microbiol 42:169–173

    PubMed  Google Scholar 

  2. Araújo WL, Marcon J, Maccheroni W, van Elsas JD, van Vuurde JWL, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914

    Article  PubMed  Google Scholar 

  3. Bauer WD, Mathesius U, Teplitski M (2005) Eukaryotes deal with bacterial quorum sensing. ASM News 71:129–135

    Google Scholar 

  4. Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328–3338

    Article  PubMed  CAS  Google Scholar 

  5. Bové JM (2006) Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J Plant Pathol 88:7–37

    Google Scholar 

  6. Brandl MT, Lindow SE (1998) Contribution of indole-3-acetic acid production to the epiphytic fitness of Erwinia herbicola. Appl Environ Microbiol 64:3256–3263

    PubMed  CAS  Google Scholar 

  7. Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening of plant growth—promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    Article  CAS  Google Scholar 

  8. Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263

    PubMed  CAS  Google Scholar 

  9. Choudhary DK, Johri BN (2008) Interaction of Bacillus spp. and plants—with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    Article  PubMed  Google Scholar 

  10. Eberl L (1999) N-acyl homoserinelactone-mediated gene regulation in gram-negative bacteria. Syst Appl Microbiol 22:493–506

    PubMed  CAS  Google Scholar 

  11. Emmert EAB, Handelsman J (1999) Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol Lett 171:1–9

    Article  PubMed  CAS  Google Scholar 

  12. Estrada-De Los Santos P, Bustillos-Cristales R, Caballero-Mellado J (2001) Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol 67:2790–2798

    Article  PubMed  CAS  Google Scholar 

  13. Etxeberria E, Gonzalez P, Achor D, Albrigo G (2009) Anatomical distribution of abnormally high levels of starch in HLB-affected Valencia orange trees. Physiol Mol Plant Pathol 74:76–83

    Article  CAS  Google Scholar 

  14. Frey-Klett P, Chavatte M, Clausse ML, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat JC, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328

    Article  PubMed  Google Scholar 

  15. Garbeva P, Postma J, vanVeen JA, vanElsas JD (2006) Effect of above-ground plant species on soil microbial community structure and its impact on suppression of Rhizoctonia solani AG3. Environ Microbiol 8:233–246

    Article  PubMed  CAS  Google Scholar 

  16. Gardner JM, Chandler JA, Feldman AW (1985) Growth response and vascular plugging of citrus inoculated with rhizobacteria and xylem-resident bacteria. Plant Soil 86:996–1000

    Article  Google Scholar 

  17. Gottwald TR (2010) Current epidemiological understanding of citrus Haunglongbing. Ann Rev Phytopathol 48:119–139

    Article  CAS  Google Scholar 

  18. Hallman J, Quadt-Hallman A, Rodriuez-Kabana R, Kloepper JW (1998) Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biol Biochem 30:925–937

    Article  Google Scholar 

  19. Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  PubMed  CAS  Google Scholar 

  20. Kim JS, Sagaram US, Burns JK, Li JL, Wang N (2009) Response of sweet orange (Citrus sinensis) to ‘Candidatus Liberibacter asiaticus’ infection: microscopy and microarray analyses. Phytopathology 99:50–57

    Article  PubMed  Google Scholar 

  21. Kloepper JW (1991) Development of in vivo assays for prescreening antagonists of Rhizoctonia solani on cotton. Phythopathology 81:1006–1013

    Article  Google Scholar 

  22. Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  PubMed  CAS  Google Scholar 

  23. Kumar B, Trivedi P, Pandey A (2007) Pseudomonas corrugata: a suitable bioinoculant for maize grown under rainfed conditions of Himalayan region. Soil Biol Biochem 39:3093–3100

    Article  CAS  Google Scholar 

  24. Lacava PT, Araújo WL, Marcon J, Maccheroni W Jr, Azevedo JL (2004) Interaction between endophytic bacteria from citrus plants and the phytopathogenic bacteria Xylella fastidiosa, causal agent of citrus-variegated chlorosis. Lett Appl Microbiol 39:55–59

    Article  PubMed  CAS  Google Scholar 

  25. Lacava PT, Azevedo JL, Miller T, Hartung JS (2009) Interactions of citrus variegated chlorosis (CVC) with endophytic bacteria. Tree Forestry Sci Biotechnol 3:40–48

    Google Scholar 

  26. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–147

    Google Scholar 

  27. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  PubMed  CAS  Google Scholar 

  28. McSpadden Gardener B (2007) Diversity and ecology of biocontrol Pseudomonas in agricultural systems. Phytopathology 97:221–226

    Article  PubMed  Google Scholar 

  29. McSpadden Gardener BB, Weller DM (2001) Changes in rhizosphere bacterium populations associated with take-all disease of wheat. Appl Environ Microbiol 67:4414–4425

    Article  PubMed  CAS  Google Scholar 

  30. Nagarajkumar M, Bhaskaran R, Velazhanan R (2004) Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol Res 159:73–81

    Article  PubMed  CAS  Google Scholar 

  31. Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  32. Nelson LM (2004) Plant growth promoting rhizobacteria (PGPR): prospects for new inoculants. Online. Crop Management. doi:10.1094/CM-2004-0301-05-RV

    Google Scholar 

  33. O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  Google Scholar 

  34. Pandey A, Sharma E, Palni LMS (1998) Influence of bacterial inoculation on maize in upland farming systems of the Sikkim Himalaya. Soil Biol Biochem 30:379–384

    Article  CAS  Google Scholar 

  35. Pattan CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  Google Scholar 

  36. Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179:5756–5767

    PubMed  CAS  Google Scholar 

  37. Poonguzhali S, Madhaiyan M, Sa TM (2007) Quorum sensing signals produced by plant-growth promoting Burkolderia strains under in vitro and in planta conditions. Res Microbiol 158:287–294

    Article  PubMed  CAS  Google Scholar 

  38. Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 68:2261–2268

    Article  PubMed  CAS  Google Scholar 

  39. Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microb Interact 19:827–837

    Article  CAS  Google Scholar 

  40. Sagaram US, De Angelis KM, Trivedi P, Andersen GL, Lu SE, Wang N (2009) Bacterial diversity analysis of Huanglongbing pathogen-infected citrus, using PhyloChip arrays and 16S rRNA gene clone library sequencing. Appl Environ Microbiol 75:1566–1574

    Article  PubMed  CAS  Google Scholar 

  41. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophore. Anal Biochem 160:47–56

    Article  PubMed  CAS  Google Scholar 

  42. Sechler A, Schuenzel EL, Cooke P, Donnua S, Thaveechai N, Postnikova E, Stone AL, Schneider WL, Damsteegt VD, Schaad NW (2009) Cultivation of ‘Candidatus Liberibacter asiaticus’, ‘Ca. L. africanus’, and ‘Ca. L. americanus’ associated with huanglongbing. Phytopathology 99:480–486

    Article  PubMed  CAS  Google Scholar 

  43. Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant growth-promoting abilities. Can J Microbiol 50:239–249

    Article  PubMed  CAS  Google Scholar 

  44. Shah S, Li J, Moffatt BA, Glick BR (1998) Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can J Microbiol 44:833–843

    Article  PubMed  CAS  Google Scholar 

  45. Shah S, Li J, Moffatt BA, Glick BR (1997) ACC deaminase genes from plant growth promoting rhizobacteria. In: Ogoshi A, Kobayashi K, Hemma Y, Kodema F, Kondo N, Akino S (eds) Plant growth-promoting rhizobacteria. Present status and future prospects. Organization for Economic Cooperation and Development, Paris, pp 320–324

    Google Scholar 

  46. Simionato AVC, Simó C, Cifuentes A, Lacava PT, Araújo WL, Azevedo JL, Carrilho E (2006) Capillary electrophoresis-mass spectrometry of citrus endophytic bacteria siderophores. Electrophoresis 27:2567–2574

    Article  PubMed  CAS  Google Scholar 

  47. Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155

    Google Scholar 

  48. Sturz AV, Christie BR, Matheson BG, Arsenault WJ, Buchanan NA (1999) Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to soil-borne plant pathogens. Plant Pathol 48:360–369

    Article  Google Scholar 

  49. Thomas P, Soly TA (2009) Endophytic bacteria associated with growing shoot tips of banana (Musa sp.) cv. Grand Naine and the affinity of endophytes to the host. Microb Ecol 58:952–964

    Article  PubMed  CAS  Google Scholar 

  50. Trivedi P, Pandey A, Palni LMS (2008) In vitro evaluation of antagonistic properties of Pseudomonas corrugata. Microbiol Res 163:329–336

    Article  PubMed  Google Scholar 

  51. Trivedi P, Sagaram US, Kim JS, Brlansky RH, Rogers ME, Stelinski LL, Oswalt C, Wang N (2009) Quantification of viable Candidatus Liberibacter asiaticus in hosts using quantitative PCR with the aid of ethidium monoazide (EMA). Eur J Plant Pathol 124:553–563

    Article  CAS  Google Scholar 

  52. Trivedi P, Duan Y, Wang N (2010) Huanglongbing, a systemic disease, restructures the bacterial community associated with citrus roots. Appl Environ Microbiol 76:3427–3436

    Article  PubMed  CAS  Google Scholar 

  53. Ulrich K, Ulrich A, Ewald D (2008) Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiol Ecol 63:169–180

    Article  PubMed  CAS  Google Scholar 

  54. van Loon LC (2000) Systemic acquired resistance. In: Fraser RSS, Van Loon LC, Slusarenko AJ (eds) Mechanisms of resistance to plant diseases. Kluwer, Dordrecht, pp 521–574

    Google Scholar 

  55. Wang QG, Garrity M, Tiedje JM, Cole JR (2007) Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  PubMed  CAS  Google Scholar 

  56. Wang Z, Yin Y, Hu H, Yuan Q, Peng G, Xia Y (2006) Development and application of molecular-based diagnosis for ‘Candidatus Liberibacter asiaticus’, the causal pathogen of citrus huanglongbing. Plant Pathol 55:630–638

    Article  CAS  Google Scholar 

  57. Widmer F, Shaffer BT, Porteous LA, Seidler RJ (1999) Analysis of nifH gene pool complexity in soil and litter at a Douglas fir forest site in the Oregon cascade mountain range. Appl Environ Microbiol 65:374–380

    PubMed  CAS  Google Scholar 

  58. Yang C, Crowley DE, Menge JA (2001) 16 S rDNA fingerprinting of rhizosphere bacterial communities associated with healthy and Phytophthora infected avocado roots. FEMS Microbiol Ecol 35:129–136

    Article  PubMed  CAS  Google Scholar 

  59. Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554

    Article  PubMed  CAS  Google Scholar 

  60. Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P, Ishimaru C, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by Florida Citrus Production Research Advisory Council (FCPRAC). We thank Robert J. C. McLean, Texas State University-San Marcos, USA, and Sylvia Jafra, Plant Research International, Wageningen, for providing the indicator strains used for AHL detection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nian Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trivedi, P., Spann, T. & Wang, N. Isolation and Characterization of Beneficial Bacteria Associated with Citrus Roots in Florida. Microb Ecol 62, 324–336 (2011). https://doi.org/10.1007/s00248-011-9822-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9822-y

Keywords

Navigation