Skip to main content
Log in

Bioactivity and genome analysis of Bacillus amyloliquefaciens GL18 isolated from the rhizosphere of Kobresia myosuroides in an alpine meadow

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The unique eco-environment of the Qinghai–Tibet Plateau breeds abundant microbial resources. In this research, Bacillus amyloliquefaciens GL18, isolated from the rhizosphere of Kobresia myosuroides from an alpine meadow, and the antagonistic activity, bacteriostatic hydrolase activity, and low temperature, salt, and drought resistance of it were determined and analysed. The seedlings of Avena sativa were root-irrigated using bacteria suspensions (cell concentration 1 × 107 cfu/mL) of GL18, and the growth-promoting effect of GL18 on it was determined under cold, salt and drought stress, respectively. The whole genome of GL18 was sequenced, and its functional genes were analysed. GL18 presented significant antagonistic activity to Fusarium graminearum, Fusarium acuminatum, Fusarium oxysporum and Aspergillus niger (inhibition zone diameter > 17 mm). Transparent zones formed on four hydrolase detection media, indicating that GL18 secreted cellulase, protease, pectinase and β-1,3-glucanase. GL18 tolerated conditions of 10 °C, 11% NaCl and 15% PEG-6000, presenting cold, salt and drought resistance. GL18 improved the cold, salt and drought tolerance of A. sativa and it showed significant growth effects under different stress. The total length of the GL18 genome was 3,915,550 bp, and the number of coding DNA sequence was 3726. Compared with the clusters of orthologous groups of proteins, gene ontology and kyoto encyclopedia of genes and genomes databases, 3088, 2869 and 2357 functional genes were annotated, respectively. GL18 contained gene clusters related to antibacterial substances, functional genes related to the synthesis of plant growth-promoting substances, and encoding genes related to stress resistance. This study identified an excellent Bacillus strain and provided a theoretical basis for improving stress resistance and promoting the growth of herbages under abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available in the NCBI repository, https://www.ncbi.nlm.nih.gov/nuccore/CP096033.1/.

References

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  PubMed  Google Scholar 

  • Ayaz M, Ali Q, Farzand A, Khan AR, Ling HL, Gao XW (2021) Nematicidal volatiles from Bacillus atrophaeus GBSC56 promote growth and stimulate induced systemic resistance in tomato against Meloidogyne incognita. Int J Mol Sci 22:5049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besemer J, Borodovsky M (2005) GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 33:451–454

    Article  Google Scholar 

  • Blin K, Wolf T, Chevrette MG, Lu XW, Schwalen CJ, Kautsar SA, Duran HGS, De Los SELC, Kim HU, Nave M, Dickschat JS, Mitchell DA, Shelest E, Breitling R, Takano E, Lee SY, Weber T, Medema MH (2017) antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res 45:36–41

    Article  Google Scholar 

  • Chan PP, Lowe TM (2019) tRNAscan-SE: Searching for tRNA genes in genomic sequences. Methods Mol Biol 1962:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen MC, Wang JP, Liu B, Zhu YJ, Xiao RF, Yang WJ, Ge CP, Chen Z (2020) Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides. BMC Microbiol 20:160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui WY, He PJ, Yang Lj, He PF, He Pb, Wu YX, Li XY, He YQ (2019) Phosphorus- and potassium-dissolving and nitrogen-fixing capabilities and growth-promotion effect of B9601–Y2 on maize. J Maize Sci 27:155–160

    Google Scholar 

  • Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Chen R, Zhang R, Jiang W, Chen X, Yin C, Mao Z (2021) Isolation, identification, and antibacterial mechanisms of Bacillus amyloliquefaciens QSB-6 and its effect on plant roots. Front Microbiol 12:746799

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao S, Yang JS, Yao RJ, Cao YF, Tang C (2020) Effects of soil amelioration measures mitigating soil salinity and improving crop Puptake in coastal area of North Jiangsu. Acta Pedol Sin 57(05):1219–1229

    Google Scholar 

  • Grandchamp GM, Caro L, Shank EA (2017) Pirated siderophores promote sporulation in Bacillus subtilis. Appl Environ Microbiol 83:e03293-e3316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guleria S, Walia A, Chauhan A, Shirkot CK (2016) Molecular characterization of alkaline protease of Bacillus amyloliquefaciens SP1 involved in biocontrol of Fusarium oxysporum. Int J Food Microbiol 232:134–143

    Article  CAS  PubMed  Google Scholar 

  • Ha-Tran DM, Nguyen TTM, Hung SH, Huang E, Huang CC (2021) Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: a review. Int J Mol Sci 22:3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou LY, Zhu ZY, Yang J, Ma H, Li QM, Tao J, Fan B, Hao JX, Yan JY, Zhou QP, Bai WM (2019) Current status, problems and potentials of forage oat in China. J Southwest Minzu Univ (nat Sci Ed) 45(03):248–253

    Google Scholar 

  • Iqbal S, Ullah N, Janjua HA (2021) In vitro evaluation and genome mining of Bacillus subtilis strain RS10 reveals its biocontrol and plant growth-promoting potential. Agriculture 11:1273

    Article  CAS  Google Scholar 

  • Jensen LJ, Julien P, Kuhn M, Mering CV, Muller J, Doerks T, Bork P (2008) eggNOG: automated construction and annotation of orthologous groups of genes. Nucleic Acids Res 36:250–254

    Article  Google Scholar 

  • Jiang W, Wu QL, Dou X, Guan ZB, Cai YJ, Liao XR (2018) Characterization of a phosphorus-solubilizing alkaline phosphatase AP3 cloned from Bacillus amyloliquefaciens YP6. Microbiol China 45:1408–1415

    Google Scholar 

  • Jin YT, Liu WH, Liu KQ, Liang GL, Jia ZF (2022) Effect of water deficit stress on the chlorophyll fluorescence parameters of Avena sativa ‘Qingyan No.1’over the whole crop growth period. Acta Pratacul Sin 31:112–126

    Google Scholar 

  • Jong ZQ, Guo ZJ, Xu SJ, He SQ (2020) Screening, identification as Bacillus amyloliquefaciens strain HZ-6-3 and evaluation of inhibitory activity against tomato gray mold, of a bacterial isolate. Acta Pratacul Sin 29(02):31–41

    Google Scholar 

  • Joshi H, Bisht N, Mishra SK, Prasad V, Chauhan PS (2023) Bacillus amyloliquefaciens modulate carbohydrate metabolism in rice-PGPR cross-talk under abiotic stress and phytohormone treatments. J Plant Growth Regul 42:1–18

    Article  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed Central  Google Scholar 

  • Kashyap DR, Botero LM, Lehr C, Hassett DJ, McDermott TR (2006) A Na+:H+ antiporter and a molybdate transporter are essential for arsenite oxidation in agrobacterium tumefaciens. J Bacteriol 188:1577–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    Article  PubMed  PubMed Central  Google Scholar 

  • Kierul K, Voigt B, Albrecht D, Chen XH, Carvalhais LC, Borriss R (2015) Influence of root exudates on the extracellular proteome of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Microbiology 161:131–147

    Article  CAS  PubMed  Google Scholar 

  • Kim YT, Kim SE, Lee WJ, Fumei Z, Cho MS, Moon JS, Oh HW, Park HY, Kim SU (2020) Isolation and characterization of a high iturin yielding Bacillus velezensis UV mutant with improved antifungal activity. PLoS ONE 15:e0234177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: An information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SW, Lee SH, Balaraju K, Park KS, Nam KW, Park JW, Park K (2014) Growth promotion and induced disease suppression of four vegetable crops by a selected plant growth-promoting rhizobacteria (PGPR) strain Bacillus subtilis 21–1 under two different soil conditions. Acta Physiol Plant 36:1353–1362

    Article  CAS  Google Scholar 

  • Levin EJ, Zhou M (2014) Recent progress on the structure and function of the TrkH/KtrB ion channel. Curr Opin Struct Biol 27:95–101

    Article  CAS  PubMed  Google Scholar 

  • Li HY, Han X, Dong YJ, Xu SS, Chen C, Y-ang F, Cui Q, Li WL (2021) Bacillaenes: decomposition trigger point and biofilm enhancement in Bacillus. ACS Omega 6:1093–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu GH, Lin NQ, Lin YZ, Liu B (2008) Advances in taxonomy and application of Genus Bacillus. Fujian J Agric Sci 23:92–99

    CAS  Google Scholar 

  • Liu Y, Zhang MJ, Meng Z, Wang BS, Chen M (2020) Research progress on the roles of cytokinin in plant response to stress. Int J Mol Sci 21:6574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo RB, Liu BH, Xie YL, Li ZY, Huang WH, Yuan JY, He GZ, Chen YX, Pan Q, Liu YJ, Tang JB, Wu GX, Zhang H, Shi YJ, Liu Y, Yu C, Wang B, Lu Y, Han CL, Cheung DW, Yiu SM, Peng SL, Zhu XQ, Liu GM, Liao XK, Li YR, Yang HM, Wang J, Lam TW, Wang J (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicolaou SA, Fast AG, Nakamaru-Ogiso E, Papoutsakis ET (2013) Overexpression of fetA (ybbL) and fetB (ybbM), encoding an iron exporter, enhances resistance to oxidative stress in escherichia coli. Appl Environ Microbiol 79:7210–7219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panneerselvam P, Senapati A, Kumar U, Sharma L, Lepcha P, Prabhukarthikeyan SR, Jahan A, Parameshwaran C, Govindharaj GPP, Lenka S, Nayak PK, Mitra D, Sagarika MS, Thangappan S, Sivakumar U (2019) Antagonistic and plant-growth promoting novel Bacillus species from long-term organic farming soils from Sikkim, India. 3 Biotech 9:416

    Article  PubMed  PubMed Central  Google Scholar 

  • Pi HL, Helmann JD (2018) Genome-wide characterization of the fur regulatory network reveals a link between catechol degradation and bacillibactin metabolism in Bacillus subtilis. Mbio 9:e01451-e1518

    Article  CAS  PubMed Central  Google Scholar 

  • Sassine J, Sousa J, Lalk M, Daniel RA, Vollmer W (2020) Cell morphology maintenance in Bacillus subtilis through balanced peptidoglycan synthesis and hydrolysis. Sci Rep 10:17910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao MQ, Zhao WS, Su ZH, Dong LH, Guo QG, Ma P (2021) Effect of Bacillus subtilis NCD-2 on the growth of tomato and the microbial community structure of rhizosphere soil under salt stress. Sci Agric Sin 54:4573–4584

    Google Scholar 

  • Sikkema HR, Noort MVD, Rheinberger J, Boer MD, Krepel ST, Schuurman-Wolters GK, Paulino C, Poolman B (2020) Gating by ionic strength and safety check by cyclic-di-AMP in the ABC transporter OpuA. Sci Adv 6:eabd7697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Su XF (2022) Effects of Bacillus subtilis on drought and salt stress tolerance of Arabidopsis thaliana. Mol Plant Breed 20:536–543

    Google Scholar 

  • Sur S, Romo TD, Grossfield A (2018) Selectivity and mechanism of fengycin, an antimicrobial lipopeptide, from molecular dynamics. J Phys Chem B 122:2219–2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uppalapati CK, Gutierrez KD, Buss-Valley G, Katzif S (2017) Growth-dependent activity of the cold shock cspA promoter + 5’ UTR and production of the protein CspA in staphylococcus aureus Newman. BMC Res Notes 10:232

    Article  PubMed  PubMed Central  Google Scholar 

  • Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu H, Wang S, Qiao J, Liu J, Zhan J, Gao X (2009) Expression of HpaGXooc protein in Bacillus subtilis and its biological functions. J Microbiol Biotechnol 19(2):194–203

    Article  CAS  PubMed  Google Scholar 

  • Wu HJ, Gu Q, Xie YL, Lou ZY, Xue PQ, Liu F, Yu CJ, Jia DD, Huang GC, Zhu BC, Schneider A, Blom J, Lasch P, Borriss R, Gao XW (2019) Cold-adapted Bacilli isolated from the Qinghai-Tibetan Plateau are able to promote plant growth in extreme environments. Environ Microbiol 21:3505–3526

    Article  CAS  PubMed  Google Scholar 

  • Wu XH, Wu HJ, Wang RY, Wang ZQ, Zhang YM, Gu Q, Farzand A, Yang X, Semenov M, Borriss R, Xie YL, Gao XW (2021) Genomic features and molecular function of a novel stress-tolerant Bacillus halotolerans strain isolated from an extreme environment. Biology (basel) 10:1030

    CAS  PubMed  Google Scholar 

  • Xie YL, Ma LZ, Xu ZW, Zhang Y, Li XL (2014) Identification of low-temperature adapting PGPR strains isolated from frozen desert area and their antimicrobial and growth-promoting activity. Chin J Biol Control 30:94–100

    Google Scholar 

  • Xie YL, Renato D’O, Stefania M, Fan J, Li YL (2017) Molecular identification of cellulose-degrading bio-control Bacillus strains and their stress-resistance and growth-promoting characteristics. Microbiol China 44:348–357

    Google Scholar 

  • Xing JS, Li R, Zhao L, Liang YC, Zhu XP (2008) Purification, characterization and antagonism of an extracellular protease from Bacillus subtilis strain T2. Acta Phytopathol Sin 38:377–381

    Google Scholar 

  • Xu CY, Wang T, Xu T, Su JY (2019) Isolation, screening and identification of a strain of drought resistant bacteria. J Arid Land Resour Environ 33:117–123

    CAS  Google Scholar 

  • Xue P, Liu F, Qiao J, Wu H, Feng Z, Gao X (2011) Screening of Bacillus strains with high inhibition on rape sclerotinia disease and its lipopeptide compounds detection. J Plant Prot 38(02):127–132

    CAS  Google Scholar 

  • Yang X, Xie YL, Chen L, Wu XH, Wang T, Qing LT, Chen HL (2021) Biological activity of grass growth-promoting and genome analysis of Bacillus amyloliquefaciens DGL1 isolated from the rhizosphere of Nitraria tangutorum of sand soil in Qinghai Province. Acta Agrestia Sin 29:1637–1648

    CAS  Google Scholar 

  • Ye JJ, Cao NN, Wu JM, Hu ZZ, Zhang JF (2014) Research progress on application of biocontrol Bacillus. J Northwest A & F Univ (nat Sci Ed) 42:185–190

    Google Scholar 

  • Zhang X, Tang WH, Zhang LQ (2007) Biological control of plant diseases and plant growth promotion by Bacillus subtilis B931. Acta Agron Sin 33:236–241

    CAS  Google Scholar 

  • Zhang F, Huo KY, Song XY, Quan YF, Wang SF, Zhang ZL, Gao WX, Yang C (2020) Engineering of a genome-reduced strain Bacillus amyloliquefaciens for enhancing surfactin production. Microb Cell Fact 19:223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the authorities of respective departments for support in doing this research. We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Funding

This work was funded by National Natural Science Foundation of China (32160030), International Sci-technology Cooperation project of Qinghai Provincial Department of Science and Technology (2018-HZ-813), State Key Laboratory of Ecology and Plateau Agriculture and Animal Husbandry, Qinghai University (2019-ZZ-12), and Applied Basic Research Project of Qinghai Provincial Department of Science and Technology (2017-ZJ-788).

Author information

Authors and Affiliations

Authors

Contributions

Author YX designed the study and administrated the project. LC performed the experiments, analysed data, and wrote the draft version of the manuscript. LC and XW collected samples for whole-genome sequencing and analysed the genome data. LW, JY and YG detected the antagonistic activity, bacteriostatic hydrolase activity, and low temperature, salt, and drought resistance. YM and FY detected the growth-promoting effect of A. sativa. under cold, salt and drought stress. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Y. L. Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal participants

This article does not contain any studies involving animals or human participants as objects of research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Xie, Y.L., Wu, X.H. et al. Bioactivity and genome analysis of Bacillus amyloliquefaciens GL18 isolated from the rhizosphere of Kobresia myosuroides in an alpine meadow. Antonie van Leeuwenhoek 117, 16 (2024). https://doi.org/10.1007/s10482-023-01917-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10482-023-01917-x

Keywords

Navigation