Skip to main content
Log in

Enhancement of FK506 production by engineering secondary pathways of Streptomyces tsukubaensis and exogenous feeding strategies

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

FK506 is a clinically important macrocyclic polyketide with immunosuppressive activity produced by Streptomyces tsukubaensis. However, the low titer at which it is produced is a bottleneck to its application and use in industrial processes. We have overexpressed five potential targets associated with FK506 production (fkbO, fkbL, fkbP, fkbM, fkbD) which were identified in our previous study, with the aim to improve FK506 production. The results of the analysis showed that the constructed strains with an additional copy of each gene increased FK506 production by approximately 10–40 % compared with the wild-type strain D852. The results of the gene expression analysis indicated that each gene was upregulated. Combinatorial overexpression of the five genes resulted in a 146 % increase in the FK506 titer to 353.2 mg/L, in comparison with the titer produced by D852. To further improve the production of FK506 by the engineered strain HT-FKBOPLMD, we supplemented the medium with various nutrients, including soybean oil, lactate, succinate, shikimate, chorismate, lysine, pipecolate, isoleucine and valine. Optimization of feeding concentrations and times resulted in HT-FKBOPLMD being able to produce approximately 70 % more FK506, thereby reaching the maximal titer of 457.5 mg/L, with lower amounts of by-products (FK520 and 37,38-dihydro-FK506). These results demonstrate that the combination of the metabolically engineered secondary pathways and the exogenous feeding strategies developed here was able to be successfully applied to improve the production of industrially and clinically important compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alper H, Jin YS, Moxley JF, Stephanopoulos G (2005) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 7(3):155–164. doi:10.1016/j.ymben.2004.12.003

    Article  PubMed  CAS  Google Scholar 

  2. Andexer JN, Kendrew SG, Nur-e-Alam M, Lazos O, Foster TA, Zimmermann AS, Warneck TD, Suthar D, Coates NJ, Koehn FE, Skotnicki JS, Carter GT, Gregory MA, Martin CJ, Moss SJ, Leadlay PF, Wilkinson B (2011) Biosynthesis of the immunosuppressants FK506, FK520, and rapamycin involves a previously undescribed family of enzymes acting on chorismate. Proc Natl Acad Sci USA 108(12):4776–4781. doi:10.1073/pnas.1015773108

    Article  PubMed  CAS  Google Scholar 

  3. Asadollahi MA, Maury J, Patil KR, Schalk M, Clark A, Nielsen J (2009) Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metab Eng 11(6):328–334. doi:10.1016/j.ymben.2009.07.001

    Article  PubMed  CAS  Google Scholar 

  4. Chen D, Zhang Q, Zhang Q, Cen P, Xu Z, Liu W (2012) Improvement of FK506 production in Streptomyces tsukubaensis by genetic enhancement of the supply of unusual polyketide extender units via utilization of two distinct site-specific recombination systems. Appl Environ Microbiol 78(15):5093–5103. doi:10.1128/aem.00450-12

    Article  PubMed  CAS  Google Scholar 

  5. Cheng YR, Fang A, Demain AL (1995) Effect of amino acids on rapamycin biosynthesis by Streptomyces hygroscopicus. Appl Microbiol Biotechnol 43(6):1096–1098

    Article  PubMed  CAS  Google Scholar 

  6. Choi HS, Lee SY, Kim TY, Woo HM (2010) In silico identification of gene amplification targets for improvement of lycopene production. Appl Environ Microbiol 76(10):3097–3105. doi:10.1128/aem.00115-10

    Article  PubMed  CAS  Google Scholar 

  7. Duan Y, Chen T, Chen X, Zhao X (2010) Overexpression of glucose-6-phosphate dehydrogenase enhances riboflavin production in Bacillus subtilis. Appl Microbiol Biotechnol 85(6):1907–1914. doi:10.1007/s00253-009-2247-6

    Article  PubMed  CAS  Google Scholar 

  8. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356. doi:10.1021/ac60111a017

    Article  CAS  Google Scholar 

  9. Fang A, Demain AL (1995) Exogenous shikimic acid stimulates rapamycin biosynthesis in Streptomyces hygroscopicus. Folia Microbiol 40(6):607–610

    Article  CAS  Google Scholar 

  10. Görisch H, Lingens F (1973) Chorismate mutase from Streptomyces aureofaciens: a heat-stable enzyme. J Bacteriol 114(2):645–651

    PubMed  Google Scholar 

  11. Gao H, Zhuo Y, Ashforth E, Zhang L (2010) Engineering of a genome-reduced host: practical application of synthetic biology in the overproduction of desired secondary metabolites. Protein Cell 1(7):621–626. doi:10.1007/s13238-010-0073-3

    Article  PubMed  CAS  Google Scholar 

  12. Gatto GJ, Boyne MT, Kelleher NL, Walsh CT (2006) Biosynthesis of pipecolic acid by RapL, a lysine cyclodeaminase encoded in the rapamycin gene cluster. J Am Chem Soc 128(11):3838–3847. doi:10.1021/ja0587603

    Article  PubMed  CAS  Google Scholar 

  13. Goranovic D, Kosec G, Mrak P, Fujs S, Horvat J, Kuscer E, Kopitar G, Petkovic H (2010) Origin of the allyl group in FK506 biosynthesis. J Biol Chem 285:14292–14300. doi:10.1074/jbc.M109.059600

    Article  PubMed  CAS  Google Scholar 

  14. Healy FG, Krasnoff SB, Wach M, Gibson DM, Loria R (2002) Involvement of a cytochrome P450 monooxygenase in thaxtomin A biosynthesis by Streptomyces acidiscabies. J Bacteriol 184(7):2019–2029. doi:10.1128/jb.184.7.2019-2029.2002

    Article  PubMed  CAS  Google Scholar 

  15. Huang D, Jia X, Wen J, Wang G, Yu G, Caiyin Q, Chen Y (2011) Metabolic flux analysis and principal nodes identification for daptomycin production improvement by Streptomyces roseosporus. Appl Biochem Biotechnol 165(7):1725–1739. doi:10.1007/s12010-011-9390-0

    Article  PubMed  CAS  Google Scholar 

  16. Huang D, Wen J, Wang G, Yu G, Jia X, Chen Y (2012) In silico aided metabolic engineering of Streptomyces roseosporus for daptomycin yield improvement. Appl Microbiol Biotechnol 94(3):637–649. doi:10.1007/s00253-011-3773-6

    Article  PubMed  CAS  Google Scholar 

  17. Jin YS, Stephanopoulos G (2007) Multi-dimensional gene target search for improving lycopene biosynthesis in Escherichia coli. Metab Eng 9(4):337–347. doi:10.1016/j.ymben.2007.03.003

    Article  PubMed  CAS  Google Scholar 

  18. König A, Schwecke T, Molnár I, Böhm GA, Lowden PAS, Staunton J, Leadlay PF (1997) The pipecolate-incorporating enzyme for the biosynthesis of the immunosuppressant rapamycin—nucleotide sequence analysis, disruption and heterologous expression of rapP from Streptomyces Hygroscopicus. Eur J Biochem 247(2):526–534. doi:10.1111/j.1432-1033.1997.00526.x

    Article  PubMed  Google Scholar 

  19. Khaw LE, Böhm GA, Metcalfe S, Staunton J, Leadlay PF (1998) Mutational biosynthesis of novel rapamycins by a strain of Streptomyces hygroscopicus NRRL 5491 disrupted in rapL, encoding a putative lysine cyclodeaminase. J Bacteriol 180(4):809–814

    PubMed  CAS  Google Scholar 

  20. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  21. Kino T, Hatanaka H, Hashimoto M, Nishiyama M, Goto T, Okuhara M, Kohsaka M, Aoki H, Imanaka H (1987) FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J Antibiot 40(9):1249–1255

    Article  PubMed  CAS  Google Scholar 

  22. Koju D, Maharjan S, Dhakal D, Yoo JC, Sohng JK (2012) Effect of different biosynthetic precursors on the production of nargenicin A1 from metabolically engineered Nocardia sp. CS682. J Microbiol Biotechnol 22(8):1127–1132. doi:10.4014/jmb.1202.02027

    Article  PubMed  CAS  Google Scholar 

  23. Kosec G, Goranovič D, Mrak P, Fujs Š, Kuščer E, Horvat J, Kopitar G, Petković H (2012) Novel chemobiosynthetic approach for exclusive production of FK506. Metab Eng 14(1):39–46. doi:10.1016/j.ymben.2011.11.003

    Article  PubMed  CAS  Google Scholar 

  24. Kudo F, Yonezawa T, Komatsubara A, Mizoue K, Eguchi T (2011) Cloning of the biosynthetic gene cluster for naphthoxanthene antibiotic FD-594 from Streptomyces sp. TA-0256. J Antibiot 64(1):123–132. doi:10.1038/ja.2010.145

    Article  PubMed  CAS  Google Scholar 

  25. Kuščer E, Coates N, Challis I, Gregory M, Wilkinson B, Sheridan R, Petković H (2007) Roles of rapH and rapG in positive regulation of rapamycin biosynthesis in Streptomyces hygroscopicus. J Bacteriol 189(13):4756–4763. doi:10.1128/jb.00129-07

    Article  PubMed  Google Scholar 

  26. Maharjan S, Park JW, Yoon YJ, Lee HC, Sohng JK (2010) Metabolic engineering of Streptomyces venezuelae for malonyl-CoA biosynthesis to enhance heterologous production of polyketides. Biotechnol Lett 32(2):277–282. doi:10.1007/s10529-009-0152-9

    Article  PubMed  CAS  Google Scholar 

  27. Medema MH, Alam MT, Breitling R, Takano E (2011) The future of industrial antibiotic production: from random mutagenesis to synthetic biology. Bioeng Bugs 2(4):230–233. doi:10.1111/j.1751-7915.2010.00226.x

    Article  PubMed  Google Scholar 

  28. Mendes MV, Tunca S, Antón N, Recio E, Sola-Landa A, Aparicio JF, Martín JF (2007) The two-component phoR-phoP system of Streptomyces natalensis: inactivation or deletion of phoP reduces the negative phosphate regulation of pimaricin biosynthesis. Metab Eng 9(2):217–227. doi:10.1016/j.ymben.2006.10.003

    Article  PubMed  CAS  Google Scholar 

  29. Mo S, Ban YH, Park JW, Yoo YJ, Yoon YJ (2009) Enhanced FK506 production in Streptomyces clavuligerus CKD1119 by engineering the supply of methylmalonyl-CoA precursor. J Ind Microbiol Biotechnol 36(12):1473–1482. doi:10.1007/s10295-009-0635-7

    Article  PubMed  CAS  Google Scholar 

  30. Mo S, Kim DH, Lee JH, Park JW, Basnet DB, Ban YH, Yoo YJ, Chen SW, Park SR, Choi EA, Kim E, Jin YY, Lee SK, Park JY, Liu Y, Lee MO, Lee KS, Kim SJ, Kim D, Park BC, Lee SG, Kwon HJ, Suh JW, Moore BS, Lim SK, Yoon YJ (2011) Biosynthesis of the allylmalonyl-CoA extender unit for the FK506 polyketide synthase proceeds through a dedicated polyketide synthase and facilitates the mutasynthesis of analogues. J Am Chem Soc 133(4):976–985. doi:10.1021/ja108399b

    Article  PubMed  CAS  Google Scholar 

  31. Motamedi H, Shafiee A (1998) The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK506. Eur J Biochem 256(3):528–534. doi:10.1046/j.1432-1327.1998.2560528.x

    Article  PubMed  CAS  Google Scholar 

  32. Motamedi H, Shafiee A, Cai SJ, Streicher SL, Arison BH, Miller RR (1996) Characterization of methyltransferase and hydroxylase genes involved in the biosynthesis of the immunosuppressants FK506 and FK520. J Bacteriol 178(17):5243–5248

    PubMed  CAS  Google Scholar 

  33. Mouslim J, David L, Pétel G, Gendraud M (1993) Effect of exogeneous methyl oleate on the time course of some parameters of Streptomyces hygroscopicus NRRL B-1865 culture. Appl Microbiol Biotechnol 39(4–5):585–588. doi:10.1007/bf00205056

    Article  CAS  Google Scholar 

  34. Murrell JM, Liu W, Shen B (2004) Biochemical characterization of the SgcA1 α-d-glucopyranosyl-1-phosphate thymidylyltransferase from the enediyne antitumor antibiotic C-1027 biosynthetic pathway and overexpression of sgcA1 in Streptomyces globisporus to improve C-1027 production. J Nat Prod 67(2):206–213. doi:10.1021/np0340403

    Article  PubMed  CAS  Google Scholar 

  35. Olano C, Lombó F, Méndez C, Salas JA (2008) Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng 10(5):281–292. doi:10.1016/j.ymben.2008.07.001

    Article  PubMed  CAS  Google Scholar 

  36. Paiva NL, Demain AL, Roberts MF (1993) The immediate precursor of the nitrogen-containing ring of rapamycin is free pipecolic acid. Enzyme Microb Technol 15(7):581–585. doi:10.1016/0141-0229(93)90020-3

    Article  CAS  Google Scholar 

  37. Parsons WH, Sigal NH, Wyvratt MJ (1993) FK-506–a novel immunosuppressant. Ann N Y Acad Sci 685(1):22–36. doi:10.1111/j.1749-6632.1993.tb35847.x

    Article  PubMed  CAS  Google Scholar 

  38. Reeves AR, Brikun IA, Cernota WH, Leach BI, Gonzalez MC, Weber JM (2006) Effects of methylmalonyl-CoA mutase gene knockouts on erythromycin production in carbohydrate-based and oil-based fermentations of Saccharopolyspora erythraea. J Ind Microbiol Biotechnol 33(7):600–609. doi:10.1007/s10295-006-0094-3

    Article  PubMed  CAS  Google Scholar 

  39. Reeves AR, Cernota WH, Brikun IA, Wesley RK, Weber JM (2004) Engineering precursor flow for increased erythromycin production in Aeromicrobium erythreum. Metab Eng 6(4):300–312. doi:10.1016/j.ymben.2004.03.003

    Article  PubMed  CAS  Google Scholar 

  40. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  41. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16(3):313–340. doi:10.1099/00207713-16-3-313

    Article  Google Scholar 

  42. Sierra-Paredes G, Sierra-Marcuño G (2008) Ascomycin and FK506: pharmacology and therapeutic potential as anticonvulsants and neuroprotectants. CNS Neurosci Ther 14(1):36–46. doi:10.1111/j.1527-3458.2008.00036.x

    Article  PubMed  CAS  Google Scholar 

  43. Singh BP, Behera BK (2009) Regulation of tacrolimus production by altering primary source of carbons and amino acids. Lett Appl Microbiol 49(2):254–259. doi:10.1111/j.1472-765X.2009.02652.x

    Article  PubMed  CAS  Google Scholar 

  44. Thykaer J, Nielsen J, Wohlleben W, Weber T, Gutknecht M, Lantz AE, Stegmann E (2010) Increased glycopeptide production after overexpression of shikimate pathway genes being part of the balhimycin biosynthetic gene cluster. Metab Eng 12(5):455–461. doi:10.1016/j.ymben.2010.05.001

    Article  PubMed  CAS  Google Scholar 

  45. Turło J, Gajzlerska W, Klimaszewska M, Król M, Dawidowski M, Gutkowska B (2012) Enhancement of tacrolimus productivity in Streptomyces tsukubaensis by the use of novel precursors for biosynthesis. Enzyme Microb Technol 51(6–7):388–395. doi:10.1016/j.enzmictec.2012.08.008

    PubMed  Google Scholar 

  46. Wilkinson CJ, Hughes-Thomas ZA, Martin CJ, Bohm I, Mironenko T, Deacon M, Wheatcroft M, Wirtz G, Staunton J, Leadlay PF (2002) Increasing the efficiency of heterologous promoters in actinomycetes. J Mol Microbiol Biotechnol 4(4):417–426

    PubMed  CAS  Google Scholar 

  47. Yepes A, Rico S, Rodriguez-Garcia A, Santamaria RI, Diaz M (2011) Novel two-component systems implied in antibiotic production in Streptomyces coelicolor. PLoS ONE 6(5):e19980. doi:10.1371/journal.pone.0019980

    Article  PubMed  CAS  Google Scholar 

  48. Yin H, Xiang S, Zheng J, Fan K, Yu T, Yang X, Peng Y, Wang H, Feng D, Luo Y, Bai H, Yang K (2012) Induction of holomycin production and complex metabolic changes by the argR mutation in Streptomyces clavuligerus NP1. Appl Environ Microbiol 78(9):3431–3441. doi:10.1128/aem.07699-11

    Article  PubMed  CAS  Google Scholar 

  49. Yoon YJ, Choi CY (1997) Nutrient effects on FK-506, a new immunosuppressant, production by Streptomyces sp. in a defined medium. J Ferment Bioeng 83(6):599–603. doi:10.1016/s0922-338x(97)81145-2

    Google Scholar 

  50. Zhu X, Zhang W, Chen X, Wu H, Duan Y, Xu Z (2010) Generation of high rapamycin producing strain via rational metabolic pathway-based mutagenesis and further titer improvement with fed-batch bioprocess optimization. Biotechnol Bioeng 107(3):506–515. doi:10.1002/bit.22819

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National 973 Project of China (No. 2013CB733600), the Key Program of National Natural Science Foundation of China (No. 21236005) and the Program of Introducing Talents of Discipline to Universities (No. B06006). The authors especially thank Professor A.L. Demain in Drew University for valuable suggestion on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Wen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 82 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, D., Xia, M., Li, S. et al. Enhancement of FK506 production by engineering secondary pathways of Streptomyces tsukubaensis and exogenous feeding strategies. J Ind Microbiol Biotechnol 40, 1023–1037 (2013). https://doi.org/10.1007/s10295-013-1301-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-013-1301-7

Keywords

Navigation