Skip to main content
Log in

Source characterisation by mixing long-running tsunami wave numerical simulations and historical observations within a metamodel-aided ABC setting

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Uncertainty related to the source parameters of earthquake can largely impact the tsunami-induced wave characteristics, especially in the case of near-field tsunami source. The combination of numerical simulations and historical eyewitness accounts can be used to better constrain those uncertainties. In the present study, we propose a Bayesian procedure to infer (i.e. learn) the probability distribution of the source parameters of the earthquake. The strategy is based on the combination of: (1) kriging-based metamodelling techniques to overcome the high computation time cost of the numerical simulator; and (2) Approximate Bayesian Computation (ABC) procedure to perform the Bayesian inference. The procedure is applied to the Ligurian (North West of Italy) 1887 tsunami case, for which tsunami-induced sea surface elevations at the coast have been reported at four locations, namely Marseille, Imperia, Diano-Marina and Genoa. The kriging metamodels are trained using only 300 long-running numerical simulations that were performed using the FUNWAVE-TVD code. Contrary to recent inversion exercises that can benefit from current modern observation networks (like tide gauges, sea bottom pressure gauges, GPS-mounted buoys), the case of historical tsunami like Liguria is complicated by the imprecision and scarcity of the observations: this is accounted for by conducting the combined ABC-kriging procedure a large number of times (i.e. 1000); each time a new set of observations being randomly generated to account for this observational error. The combined analysis of the inference results and of the observation uncertainty reveals that: (1) the coseismic slip is the most important source parameter with a very peaky density distribution around low values ranging from 0.3 to 0.6 m; (2) The fault width has a peaky density distribution around low values ranging from 10 to 12 km; (3) The rake and azimuth distribution only slightly deviate from the uniform prior, hence indicating a low influence of those parameters; (4) The bi-modal distribution of the dip is also evidenced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Available at http://tsunamis.brgm.fr/index.asp?langue=GB&Onglet=70&IDT=&DPT=&COM=.

  2. http://tsunamis.brgm.fr/fiche_scan.asp?numevt=60003&chrono=41.

References

  • Baptista MA, Miranda PMA, Miranda JM, Victor LM (1998) Constrains on the source of the 1755 Lisbon tsunami inferred from numerical modelling of historical data. J Geodyn 25(1–2):159–174

    Article  Google Scholar 

  • Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162(4):2025–2035

    Google Scholar 

  • Behrens J, Dias F (2015) New computational methods in tsunami science. Phil Trans R Soc A 373(2053). doi:10.1098/rsta.2014.0382

  • Cook SR, Gelman A, Rubin DB (2006) Validation of software for Bayesian models using posterior quantiles. J Comput Graph Stat 15(3):675–692

    Article  Google Scholar 

  • Courboulex F, Deschamps A, Cattaneo M, Costi F, Deverchere J, Virieux J, Augliera P, Lanza V, Spallarossa D (1998) Source study and tectonic implications of the 1995 Ventimiglia (border of Italy and France) earthquake (ML = 4.7). Tectonophysics 290:245–257. doi:10.1016/S0040-1951(98)00024-9

    Article  Google Scholar 

  • EMODnet Bathymetry Consortium (2016) EMODnet Digital Bathymetry (DTM). EMODnet Bathymetry. doi:10.12770/c7b53704-999d-4721-b1a3-04ec60c87238

  • Eva C, Rabinovich AB (1997) The February 23, 1887 tsunami recorded on the Ligurian coast, western Mediterranean. Geophys Res Lett 24:2211–2214

    Article  Google Scholar 

  • Fan YR, Huang W, Huang GH, Huang K, Zhou X (2015) A PCM-based stochastic hydrological model for uncertainty quantification in watershed systems. Stoch Env Res Risk Assess 29(3):915–927

    Article  Google Scholar 

  • Faure H, Tezuka S (2000) Another random scrambling of digital (t,s)-sequences. In: Monte Carlo and Quasi-Monte Carlo. Springer, Berlin

  • Forrester AIJ, Sobester A, Keane AJ (2008) Engineering design via surrogate modelling: a practical guide. Wiley, Chichester

    Book  Google Scholar 

  • Fraser S, Raby A, Pomonis A, Goda K, Chen Chian S, Macabuag J, Offord M, Saito K, Sammonds P (2013) Tsunami damage to coastal defences and buildings in the March 11th 2011 M w 9.0 Great East Japan earthquake and tsunami. Bull Earthq Eng 11(1):205–239

    Article  Google Scholar 

  • Fukutani Y, Suppasri A, Imamura F (2015) Stochastic analysis and uncertainty assessment of tsunami wave height using a random source parameter model that targets a Tohoku-type earthquake fault. Stoch Env Res Risk Assess 29(7):1763–1779

    Article  Google Scholar 

  • Garcin M, Desprats JF, Fontaine M, Pedreros R, Attanayake N, Fernando S, Siriwardana CHER, De Silva U, Poisson B (2008) Integrated approach for coastal hazards and risks in Sri Lanka. Natural Hazards Earth Syst Sci 8:577–586

    Article  Google Scholar 

  • Goda K, Mai PM, Yasuda T, Mori, N (2014) Sensitivity of tsunami wave profiles and inundation simulations to earthquake slip and fault geometry for the 2011 Tohoku earthquake. Earth Planets Space 66(105). doi:10.1186/1880-5981-66-105

  • Goda K, Petrone C, De Risi R, Rossetto T (2016) Stochastic coupled simulation of strong motion and tsunami for the 2011 Tohoku, Japan earthquake. Stoch Environ Res Risk Assess. doi:10.1007/s00477-016-1352-1

  • Grilli ST, Harris JC, Tajalli Bakhsh TS, Masterlark TL, Kyriakopoulos C, Kirby JT, Shi F (2013) Numerical simulation of the 2011 Tohoku tsunami based on a new transient FEM co-seismic source: comparison to far- and near-field observations. Pure appl Geophys 170:1333–1359

    Article  Google Scholar 

  • Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84(B5). doi:10.1029/0JGREA0000840000B5002348000001.issn:0148-0227

  • Hartig F, Calabrese JM, Reineking B, Wiegand T, Huth A (2011) Statistical inference for stochastic simulation models-theory and application. Ecol Lett 14(8):816–827

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Hébert H, Macary O, Gailler A, Daubord C, Créach R (2015) The 1887 tsunami in the Ligurian Sea: detailed appraisal of tsunami waves in the Genoa harbour (Italy) through observations and numerical modelling. Geophys Res Abstr 17 EGU2015-4593-4. Available at: http://meetingorganizer.copernicus.org/EGU2015/EGU2015-4593-4.pdf

  • Hossen MJ, Cummins PR, Dettmer J, Baba T (2015) Tsunami waveform inversion for sea surface displacement following the 2011 Tohoku earthquake: importance of dispersion and source kinematics. J Geophys Res Solid Earth 120:6452–6473. doi:10.1002/2015JB011942

    Article  Google Scholar 

  • Ioualalen M, Larroque C, Scotti O, Daubord C (2014) Tsunami mapping related to local earthquakes on the French-Italian Riviera (Western Mediterranean). Pure appl Geophys 171:1423–1443. doi:10.1007/s00024-013-0699-1

    Article  Google Scholar 

  • Jabot F, Lagarrigues G, Courbaud B, Dumoulin N (2014) FA comparison of emulation methods for Approximate Bayesian Computation. Available at http://arxiv.org/abs/1412.7560

  • Jandarov R, Haran M, Bjørnstad O, Grenfell B (2014) Emulating a gravity model to infer the spatiotemporal dynamics of an infectious disease. J R Stat Soc Ser C (Appl Stat) 63(3):423–444

    Article  Google Scholar 

  • Jia G, Taflanidis AA (2013) Kriging metamodeling for approximation of high-dimensional wave and surge responses in real-time storm/hurricane risk assessment. Comput Methods Appl Mech Eng 261:24–38

    Article  Google Scholar 

  • Kazolea M, Filippini A, Ricchiuto M, Abadie S, Martin Medina M, Morichon D, Journeau C, Marcer R, Pons K, LeRoy S, Pedreros R, Rousseau M (2016) Wave propagation breaking, and overtoping on a 2D reef: a comparative evaluation of numerical codes for tsunami modelling. Euro J Mech B Fluids (submitted to). Research Report RR-9005, INRIA; available at https://hal-brgm.archives-ouvertes.fr/hal-01414781v2

  • Kennedy MC, O’Hagan A (2001) Bayesian Calibration of Computer Models. J R Stat Soc B 63(3):425–464

    Article  Google Scholar 

  • Lambert J, Terrier M (2011) Historical tsunami database for France and its overseas territories. Nat Hazards Earth Syst Sci 11:1037–1046

    Article  Google Scholar 

  • Larroque C, Scotti O, Ioualalen M (2012) Reappraisal of the 1887 Ligurian earthquake (western Mediterranean) from macroseismicity, active tectonics and tsunami modelling, Geophys J Int. doi:10.1111/j.1365-246X.2012.05498.x

  • Liu X, Cardiff MA, Kitanidis PK (2010) Parameter estimation in nonlinear environmental problems. Stoch Env Res Risk Assess 24(7):1003–1022

    Article  Google Scholar 

  • Løvholt F, Pedersen G, Bazin S, Kuhn D, Bredesen RE, Harbitz C (2012) Stochastic analysis of tsunami runup due to heterogeneous coseismic slip and dispersion. J Geophys Res Oceans 117:C03047. doi:10.1029/2011JC007616

    Article  Google Scholar 

  • Marin JM, Pudlo P, Robert CP, Ryder RJ (2012) Approximate Bayesian computational methods. Stat Comput 22(6):1167–1180

    Article  Google Scholar 

  • McKay MD, Beckman RJ, Conover WJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21:239–245

    Google Scholar 

  • Mirzaei M, Huang YF, El-Shafie A, Shatirah A (2015) Application of the generalized likelihood uncertainty estimation (GLUE) approach for assessing uncertainty in hydrological models: a review. Stoch Environ Res Risk Assess 29(5):1265–1273

    Article  Google Scholar 

  • Molinari I, Tonini R, Lorito S, Piatanesi A, Romano F, Melini D, Hoechner A, Gonzàlez Vida JM, Maciás J, Castro MJ, de la Asunción M (2016) Fast evaluation of tsunami scenarios: uncertainty assessment for a Mediterranean Sea database. Nat Hazards Earth Syst Sci 16(12):2593

    Article  Google Scholar 

  • Mueller C, Power W, Fraser S, Wang X (2015) Effects of rupture complexity on local tsunami inundation: implications for probabilistic tsunami hazard assessment by example. J Geophys Res Solid Earth 120(1):488–502. doi:10.1002/2014JB011301

    Article  Google Scholar 

  • Muhari A, Imamura F, Suppasri A, Mas E (2012) Tsunami arrival time characteristics of the 2011 East Japan Tsunami obtained from eyewitness accounts, evidence and numerical simulation. J Nat Disaster Sci 34(1):91–104

    Article  Google Scholar 

  • Mulia IE, Asano T (2015) Initial tsunami source estimation by inversion with an intelligent selection of model parameters and time delays. J Geophys Res Oceans 121(1):441–456. doi:10.1002/2015JC010877

    Article  Google Scholar 

  • Nistor I, Palermo D (2015) Chapter 20—Post-Tsunami Engineering Forensics: Tsunami impact on infrastructure—lessons from 2004 Indian Ocean, 2010 Chile, and 2011 Tohoku Japan Tsunami field surveys. In: Esteban M, Takagi H, Shibayama T (eds) Handbook of coastal disaster mitigation for engineers and planners. Butterworth-Heinemann, Boston, pp 417–435

    Chapter  Google Scholar 

  • Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seism Soc Am 75:1135–1154

    Google Scholar 

  • Pappenberger F, Beven KJ (2006) Ignorance is bliss: or seven reasons not to use uncertainty analysis. Water Resour Res 42(5). doi:10.1029/2005WR004820

  • Piatanesi A, Tinti S (1998) A revision of the 1693 eastern Sicily earthquake and tsunami. J Geophys Res 103:2749–2758

    Article  Google Scholar 

  • Poisson B, Oliveros C, Pedreros R (2011) Is there a best source model of the Sumatra 2004 earthquake for simulating the consecutive Tsunami? Geophys J Int 185(3):1365–1378

    Article  Google Scholar 

  • Prangle D, Blum MGB, Popovic G, Sisson SA (2014) Diagnostic tools for approximate Bayesian computation using the coverage property. Aust N Zeal J Stat 56(4):309–329

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rousseau M, Rohmer J, Lemoine A, Richet Y, Pedreros R (2015) What are the most influential source parameters for tsunami hazard assessments? Insights from global sensitivity analysis; In: French-Japanese symposium on earthquakes & triggered hazards, Orléans, 16–18 September 2015

  • Roustant O, Ginsbourger D, Deville Y (2012) DiceKriging, DiceOptim: two R packages for the analysis of computer experiments by kriging-based metamodeling and optimization. J Stat Softw 21:1–55

    Google Scholar 

  • Saito T, Inazu D, Miyoshi T, Hino R (2014) Dispersion andnonlinear effects in the 2011 Tohoku-Oki earthquake tsunami. J Geophys Res Oceans 119:5160–5180. doi:10.1002/2014JC00997

    Article  Google Scholar 

  • Santos A, Koshimura S (2015) The historical review of the 1755 Lisbon Tsunami. J Geodesy Geomat Eng 1:38–52

    Google Scholar 

  • Satake K, Fujii Y, Harada T, Namegaya Y (2013) Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as inferred from tsunami waveform data. Bull Seismol Soc Am 103(2B):1473–1492. doi:10.1785/0120120122

    Article  Google Scholar 

  • Shi F, Kirby JT, Harris JC, Geiman JD, Grilli ST (2012) A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Model 43–44:36–51. doi:10.1016/j.ocemod.2011.12.004

    Article  Google Scholar 

  • Silverman BW (1986) Density estimation. Chapman and Hall, London

    Book  Google Scholar 

  • Sraj I, Mandli KT, Knio OM, Dawson CN, Hoteit I (2014) Uncertainty quantification and inference of Manning’s friction coefficients using DART buoy data during the Tohoku tsunami. Ocean Model 83:82–97. doi:10.1016/j.ocemod.2014.09.001

    Article  Google Scholar 

  • Storlie CB, Swiler LP, Helton JC, Sallaberry CJ (2009) Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models. Reliab Eng Syst Saf 94(11):1735–1763

    Article  Google Scholar 

  • Tatsumi D, Calder CA, Tomita T (2014) Bayesian near-field tsunami forecasting with uncertainty estimates. J Geophys Res Oceans 119:2201–2211. doi:10.1002/2013JC009334

    Article  Google Scholar 

  • Volkova E, Iooss B, Van Dorpe F (2008) Global sensitivity analysis for a numerical model of radionuclide migration from the RRC “Kurchatov Institute” radwaste disposal site. Stoch Environ Res Risk Assess 22(1):17–31

    Article  Google Scholar 

  • Vrugt JA, Ter Braak CJ, Gupta HV, Robinson BA (2009) Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? Stoch Environ Res Risk Assess 23(7):1011–1026

    Article  Google Scholar 

  • Wei G, Kirby JT, Grilli ST, Subramanya R (1995) A fully nonlinear Boussinesq model for surface waves. I. Highly nonlinear, unsteady waves. J Fluid Mech 294:71–92

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002

    Google Scholar 

  • Wilkinson R (2014) Accelerating ABC methods using Gaussian processes. In: Proceedings of the 17th international conference on artificial intelligence and statistics (AISTATS), Reykjavik

  • Yamazaki Y, Lay T, Cheung KF, Yue H, Kanamori H (2011) Modeling near-field tsunami observations to improve finite-fault slip models for the 11 March 2011 Tohoku earthquake. Geophys Res Lett 38:L00G15. doi:10.1029/2011GL049130

    Google Scholar 

  • Zitellini N, Mendes LA, Cordoba D, Danobeitia J, Nicolich R, Pellis G, Ribeiro A, Sartori R, Torelli L, Bartolome R, Bortoluzzi G, Calafato A, Carrilho F, Casoni L, Chierici F, Corela C, Correggiari A, Della Vedova B, Gracia E, Jornet P, Landuzzi M, Ligi M, Magagnoli A, Marozzi G, Matias L, Penitenti D, Rodriguez P, Rovere M, Terrinha P, Vigliotti L, Zahinos Ruiz A (2001) Source of 1755 Lisbon earthquake and tsunami investigated. EOS Trans Am Geophys Union 82(26):285–291

    Google Scholar 

Download references

Acknowledgements

All authors acknowledge funding supported by the French National Research Agency (ANR) in the frame of “Investissements d’Avenir” (Project TANDEM, under the Grant ANR-11-RSNR-00023-01). Jeremy Rohmer also acknowledges a partial funding from the BRGM-funded research project PSO-Incertitudes. Anne Lemoine also acknowledges a partial funding from the French National Research Agency (ANR) in the frame of “CSOSG 2011” (Project DSS_EVAC_LOGISTIQUE, under the Grant ANR-11- SECU-002-01). This work is based on an oral presentation during a seminar on “Verification, Validation and Quantification of Uncertainty in Numerical Simulation” available at http://www.association-aristote.fr/lib/exe/fetch.php/pres_rohmer.pdf.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rohmer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohmer, J., Rousseau, M., Lemoine, A. et al. Source characterisation by mixing long-running tsunami wave numerical simulations and historical observations within a metamodel-aided ABC setting. Stoch Environ Res Risk Assess 32, 967–984 (2018). https://doi.org/10.1007/s00477-017-1423-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-017-1423-y

Keywords

Navigation