Skip to main content
Log in

Parameter estimation in nonlinear environmental problems

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Popular parameter estimation methods, including least squares, maximum likelihood, and maximum a posteriori (MAP), solve an optimization problem to obtain a central value (or best estimate) followed by an approximate evaluation of the spread (or covariance matrix). A different approach is the Monte Carlo (MC) method, and particularly Markov chain Monte Carlo (MCMC) methods, which allow sampling from the posterior distribution of the parameters. Though available for years, MC methods have only recently drawn wide attention as practical ways for solving challenging high-dimensional parameter estimation problems. They have a broader scope of applications than conventional methods and can be used to derive the full posterior pdf but can be computationally very intensive. This paper compares a number of different methods and presents improvements using as case study a nonlinear DNAPL source dissolution and solute transport model. This depth-integrated semi-analytical model approximates dissolution from the DNAPL source zone using nonlinear empirical equations with partially known parameters. It then calculates the DNAPL plume concentration in the aquifer by solving the advection-dispersion equation with a flux boundary. The comparison is among the classical MAP and some versions of computer-intensive Monte Carlo methods, including the Metropolis–Hastings (MH) method and the adaptive direction sampling (ADS) method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bard Y (June 1973) Nonlinear parameter estimation. Academic Press, London, ISBN 0120782502

  • Bates BC, Campbell EP (2001) A markov chain Monte carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling. Water Resour Res 37(4):937–947

    Article  Google Scholar 

  • Blasone RS, Madsen H, Rosbjerg D (2008) Uncertainty assessment of integrated distributed hydrological models using glue with markov chain Monte carlo sampling. J Hydrol 353(1–2):18–32

    Google Scholar 

  • Brooks SP, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7(4):434–455

    Article  Google Scholar 

  • Butler JJ, McElwee CD, Bohling GC (1999) Pumping tests in networks of multilevel sampling wells: motivation and methodology. Water Resour Res 35(11):3553–3560

    Article  Google Scholar 

  • Carrera J, Neuman SP (1986) Estimation of aquifer parameters under transient and steady-state conditions. 1. maximum-likelihood method incorporating prior information. Water Resour Res 22(2):199–210

    Article  Google Scholar 

  • Chib S, Greenberg E (1995) Understanding the Metropolis–Hastings algorithm. Am Stat 49(4):327–335

    Article  Google Scholar 

  • Cowles MK, Carlin BP (1996) Markov chain Monte carlo convergence diagnostics: a comparative review. J Am Stat Assoc 91(434):883–904

    Article  Google Scholar 

  • Domenico PA (1987) An analytical model for multidimensional transport of a decaying contaminant species. J Hydrol 91(1–2):49–58

    Article  CAS  Google Scholar 

  • Dorrie H (1965) 100 Great problems of elementary mathematics, Dover Publications, NY, pp 73–77

  • Duane S, Kennedy AD, Pendleton BJ, Roweth D (1987) Hybrid Monte carlo. Phys Lett B 195(2):216–222. doi:10.1016/0370-2693(87)91197-X

  • Feyen L, Vrugt JA, Nuallain BO, van der Knijff J, De Roo A (2007) Parameter optimisation and uncertainty assessment for large-scale streamflow simulation with the lisflood model. J Hydrol 332:276–289

    Article  Google Scholar 

  • Fisher AR (1953) The design of experiments, 6th edn. Hafner Pub. Co, NY

  • Franssen HJH, Gomez-Hernandez J, Sahuquillo A (2003) Coupled inverse modelling of groundwater flow and mass transport and the worth of concentration data. J Hydrol 281(4):281–295

    Article  CAS  Google Scholar 

  • Franssen HJH, Alcolea A, Riva M, Bakr M, van der Wiel N, Stauffer F, Guadagnini A (2009) A comparison of seven methods for the inverse modelling of groundwater flow. application to the characterisation of well catchments. Adv Water Resour 32(6):851–872

    Article  Google Scholar 

  • Frind EO, Pinder GF (1973) Galerkin solution of inverse problem for aquifer transmissivity. Water Resour Res 9(5):1397–1410

    Article  Google Scholar 

  • Fu JL, Gomez-Hernandez JJ (2009) Uncertainty assessment and data worth in groundwater flow and mass transport modeling using a blocking markov chain Monte carlo method. J Hydrol 364(3–4):328–341

    Article  CAS  Google Scholar 

  • Gelman A, Rubin DB (1992) A single series from the gibbs sampler provides a false sense of security. In: Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds) Bayesian statistics, 4th edn. Oxford University Press, New York, pp 625–631

  • Geman S, Geman D (1984) Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6(6):721–741.

    Google Scholar 

  • Gilks WR, Roberts GO, George EI (1994) Adaptive direction sampling. Stat 43(1):179–189

    Article  Google Scholar 

  • Gill PE, Murray W (1981) Practical optimization. Academic Press, London, pp 113–113

  • Gomez-Hernandez JJ, Sahuquillo A, Capilla JE (1997) Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data—i. theory. J Hydrol 203(1–4):162–174

    Google Scholar 

  • Gomez-Hernandez JJ, Franssen HJH, Cassiraga EF (2001) Stochastic analysis of flow response in a three-dimensional fractured rock mass block. International J Rock Mech Mini Sci 38(1):31–44

    Article  Google Scholar 

  • Hastings WK (1970) Monte carlo sampling methods using markov chains and their applications. Biometrika 57(1):97–109. ISSN 00063444

    Google Scholar 

  • Kentel E, Aral MM (2005) 2D Monte carlo versus 2D fuzzy Monte carlo health risk assessment. Stoch Environ Res Risk Assess 19(1):86–96. doi:10.1007/s00477-004-0209-1

    Google Scholar 

  • Kitanidis PK, Lane RW (1985) Maximum-likelihood parameter-estimation of hydrologic spatial processes by the gauss-newton method. J Hydrol 79(1–2):53–71

    Article  Google Scholar 

  • Kitanidis PK, Vomvoris EG (1983) A geostatistical approach to the inverse problem in groundwater modeling (steady-state) and one-dimensional simulations. Water Resour Res 19(3):677–690

    Article  Google Scholar 

  • Kuczera G, Parent E (1998) Monte carlo assessment of parameter uncertainty in conceptual catchment models: the metropolis algorithm. J Hydrol 211(1–4):69–85

    Article  Google Scholar 

  • Lavenue M, de Marsily G (2001) Three-dimensional interference test interpretation in a fractured aquifer using the pilot point inverse method. Water Resour Res 37(11):2659–2675

    Google Scholar 

  • Liu JS, Liang FM, Wong WH (2000) The multiple-try method and local optimization in metropolis sampling. J Am Stat Assoc 95(449):121–134

    Article  Google Scholar 

  • Liu X, Illman WA, Craig AJ, Zhu J, Yeh TCJ (2007) Laboratory sandbox validation of transient hydraulic tomography. Water Resour Res 43(5):13. doi:10.1029/2006WR005144

    Article  Google Scholar 

  • Marshall L, Nott D, Sharma A (2004) A comparative study of markov chain Monte carlo methods for conceptual rainfall-runoff modeling. Water Resour Res 40(2). doi:10.1029/2003WR002378

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092. doi:10.1063/1.1699114

    Article  Google Scholar 

  • Michalak AM (2008) A gibbs sampler for inequality-constrained geostatistical interpolation and inverse modeling. Water Resour Res 44(9)W09437

  • Michalak AM, Kitanidis PK (2003) A method for enforcing parameter nonnegativity in bayesian inverse problems with an application to contaminant source identification. Water Resour Res 39(2):SBH 7/1–SBH 7/14

  • Oliver DS, Cunha LB, Reynolds AC (1997) Markov chain Monte carlo methods for conditioning a permeability field to pressure data. Math Geol 29(1):61–91

    Article  Google Scholar 

  • Parker JC, Park E (2004) Modeling field-scale dense nonaqueous phase liquid dissolution kinetics in heterogeneous aquifers. Water Resour Res 40(5). doi:10.1029/2003WR002807

  • Parker JC, Park E, Tang G (2008) Dissolved plume attenuation with dnapl source remediation, aqueous decay and volatilization—analytical solution, model calibration and prediction uncertainty. J Contam Hydrol 102(1–2):61–71. doi:10.1016/j.jconhyd.2008.03.009

  • Ramarao BS, Lavenue AM, Demarsily G, Marietta MG (1995) Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields. 1. theory and computational experiments. Water Resour Res 31(3):475–493

    Article  Google Scholar 

  • Ritter C, Tanner MA (1992) Facilitating the gibbs sampler - the gibbs stopper and the griddy-gibbs sampler. J Am Stat Assoc 87(419):861–868

    Google Scholar 

  • Sahuquillo A, Capilla JE, Gómez-Hernández JJ, Andreu J (1992) Conditional simulation of transmissivity fields honoring piezometric data. In: Blain WR, Cabrera E (eds) Fluid flow modeling, hydraulic engineering software, vol 2 of 4. Elsevier, Oxford, pp 201–214

  • Smith TJ, Marshall LA (2008) Bayesian methods in hydrologic modeling: a study of recent advancements in markov chain Monte Carlo techniques. Water Resour Res 44. doi:10.1029/2007WR006705

  • van den Bos A (2007) Parameter estimation for scientists and engineers. Wiley-Interscience, Hoboken, NJ, 273 pp. ISBN 0470147814

  • von Neumann J (1951) Various techniques used in connection with random digits. In: Householder AS, Forsythe GE, Germond HH (eds) Monte Carlo method. National Bureau of Standards Applied Mathematics Series, vol 12. U.S. Government Printing Office, Washington, DC, pp 36–38

  • Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003) A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39(8) 1.1–1.16

  • Vrugt JA, ter Braak CJF, Clark MP, Hyman JM, Robinson BA (2008) Treatment of input uncertainty in hydrologic modeling: doing hydrology backward with markov chain Monte carlo simulation. Water Resour Res 44. doi:10.1029/2007WR006720

  • Vrugt JA, ter Braak CJF, Gupta HV, Robinson BA (2009) Equifinality of formal (DREAM) and informal (GLUE) bayesian approaches in hydrologic modeling? Stoch Environ Res Risk Assess 23(7):1011–1026. doi:10.1007/s00477-008-0274-y

    Google Scholar 

  • Yeh TCJ, Liu SY (2000) Hydraulic tomography: development of a new aquifer test method. Water Resour Res 36(8)2095–2105

    Google Scholar 

Download references

Acknowledgements

This research was funded by the U.S. Department of Defense Strategic Environmental Research and Development Program (SERDP) Environmental Restoration Focus Area managed by Andrea Leeson under project ER-1611 entitled “Practical Cost Optimization of Characterization and Remediation Decisions at DNAPL sites with Consideration of Prediction Uncertainty.” Additional funding was provided by the Stanford Center for Computational Earth and Environmental Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Cardiff, M.A. & Kitanidis, P.K. Parameter estimation in nonlinear environmental problems. Stoch Environ Res Risk Assess 24, 1003–1022 (2010). https://doi.org/10.1007/s00477-010-0395-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-010-0395-y

Keywords

Navigation