Skip to main content
Log in

Numerical Simulation of the 2011 Tohoku Tsunami Based on a New Transient FEM Co-seismic Source: Comparison to Far- and Near-Field Observations

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In this work, we simulate the 2011 M9 Tohoku-Oki tsunami using new coseismic tsunami sources based on inverting onshore and offshore geodetic data, using 3D Finite Element Models (FEM). Such FEMs simulate elastic dislocations along the plate boundary interface separating the stiff subducting Pacific Plate from the relatively weak forearc and volcanic arc of the overriding Eurasian plate. Due in part to the simulated weak forearc materials, such sources produce significant shallow slip (several tens of meters) along the updip portion of the rupture near the trench. To assess the accuracy of the new approach, we compare observations and numerical simulations of the tsunami's far- and near-field coastal impact for: (i) one of the standard seismic inversion sources (UCSB; Shao et al. 2011); and (ii) the new FEM sources. Specifically, results of numerical simulations for both sources, performed using the fully nonlinear and dispersive Boussinesq wave model FUNWAVE-TVD, are compared to DART buoy, GPS tide gauge, and inundation/runup measurements. We use a series of nested model grids with varying resolution (down to 250 m nearshore) and size, and assess effects on model results of the latter and of model physics (such as when including dispersion or not). We also assess the effects of triggering the tsunami sources in the propagation model: (i) either at once as a hot start, or with the spatiotemporal sequence derived from seismic inversion; and (ii) as a specified surface elevation or as a more realistic time and space-varying bottom boundary condition (in the latter case, we compute the initial tsunami generation up to 300 s using the non-hydrostatic model NHWAVE). Although additional refinements are expected in the near future, results based on the current FEM sources better explain long wave near-field observations at DART and GPS buoys near Japan, and measured tsunami inundation, while they simulate observations at distant DART buoys as well or better than the UCSB source. None of the sources, however, are able to explain the largest runup and inundation measured between 39.5° and 40.25°N, which could be due to insufficient model resolution in this region (Sanriku/Ria) of complex bathymetry/topography, and/or to additional tsunami generation mechanisms not represented in the coseismic sources (e.g., splay faults, submarine mass failure). This will be the object of future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abadie S, Harris JC, Grilli ST, Fabre R (2012) Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): tsunami source and near field effects. Journal of Geophysical Research 117(C07646), doi:10.1029/2011JC007646

  • Abaqus (2009) Abaqus. Dassault Systemes Simulia Corp., Providence, RI, 6.9-EF edn, URL: http://www.simulia.com

  • Abe H, Sugeno Y, Chigama A (1990) Estimation of the height of the Sanriku Jogan 11 earthquake-tsunami (A.D. 869) in the Sendai Plain. Zisin [Earthquakes] 43:513–525

  • Amante C, Eakins BW (2009) ETOPO1 one arc-minute global relief model: Procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24:19 pp

  • Ammon CJ, Lay T, Kanamori H, Cleveland M (2011) A rupture model of the great 2011 Tohoku earthquake. Earth Planets Space 63:693–696, doi:10.5047/eps.2011.05.015

  • Aster R, Borchers B, Thurber C (2005) Parameter estimation and inverse problems. Elsevier Academic Press, Amsterdam

  • Bird P (2003) An updated digital model of plate boundaries. Geochemistry Geophysics Geosystems 4(3):55 pp., doi:10.1029/2001GC000252.

  • Chen Q (2006) Fully nonlinear Boussinesq-type equations for waves and currents over porous beds. Journal of Engineering Mechanics 132:220–230

  • Chen Q, Kirby JT, Dalrymple RA, Kennedy AB, Chawla A (2000) Boussinesq modeling of wave transformation, breaking and runup. II: Two horizontal dimensions. J Waterway, Port, Coastal and Ocean Engrng 126:48–56

  • Chen Q, Kirby JT, Dalrymple RA, ShiF, ThorntonEB (2003) Boussinesq modeling of longshore currents. Journal of Geophysical Research 108(C11):3362, doi:10.1029/2002JC001308

  • Day SJ, Watts P, Grilli ST, Kirby J (2005) Mechanical models of the 1975 kalapana, hawaii earthquake and tsunami. Marine Geology 215(1-2):59–92, doi:10.1016/j.margeo.2004.11.008

  • DeMets C, Gordon R, Argus D (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophysical Research Letters 21:2191–2194

  • Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Physics of the Earth and Planetary Interiors 25(4):297–356

  • Enet F, Grilli ST (2007) Experimental study of tsunami generation by three-dimensional rigid underwater landslides. Int J Num Meth Fluids 133:442–454

  • Erduran KS, Ilic S, Kutija V (2005) Hybrid finite-volume finite-difference scheme for solution of Boussinesq equations. Int J Num Meth Fluids 49:1213–1232

  • Fujii Y, Satake K, Sakai S, Shinohara M, Kanazawa T (2011) Tsunami source of the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 63:815–820

  • Fujiwara T, Kodaira S, No T, Kaiho Y, Takahashi N, Kaneda Y (2011) Tohoku-Oki earthquake: Displacement reaching the trench axis. Science 334:1240

  • Geospatial Information Authority of Japan (2011) The 2011 off the Pacific coast of Tohoku Earthquake: Crustal Deformation and Fault Model (Preliminary), http://www.gsi.go.jp/cais/topic110313-index-e.html

  • Gica E, Spillane M, Titov V (2007) Tsunami hazard assessment using Short-term Inundation Forecasting for Tsunamis (SIFT) tool. In: EASTEC International Symposium 2007—Dynamic Earth: its Origin and Future, Sendai, Japan

  • Gica E, Spillane M, Titov V, Chamberlin C, Newman J (2008) Development of the forecast propagation database for NOAA’s Short-term Inundation Forecast for Tsunamis (SIFT). Tech. rep., NOAA Tech. Memo. OAR PMEL-139,89 pp

  • Gonzalez FI, Milburn HM, Bernard EN, Newman JC (1998) Deep-ocean Assessment and Reporting of Tsunamis (DART): brief overview and status report. In: Proceedings of the International Workshop on Tsunami Disaster Mitigation, Tokyo, Japan, URL: http://www.ndbc.noaa.gov/dart/brief.shtml

  • Gottlieb S, Shu CW, Tadmor E (2001) Strong stability-preserving high-order time discretization methods. SIAM Review 43:89–112

  • Grilli S, Ioualalen M, Asavanant J, Shi F, Kirby J, Watts P (2007) Source constraints and model simulation of the December 26, 2004 Indian Ocean tsunami. Journal of Waterway Port Coastal and Ocean Engineering 133(6):414–428, doi:10.1061/(ASCE)0733-950X(2007)133:6(414)

  • Grilli S, Dubosq S, Pophet N, Prignon Y, Kirby J, Shi F (2010) Numerical simulation and first-order hazard analysis of large co-seismic tsunamis generated in the Puerto Rico trench: near-field impact on the north shore of Puerto Rico and far-field impact on the us east coast. Natural Hazards and Earth System Sciences 10:2109–2125, doi:10.5194/nhess-2109-2010

  • Hasegawa A, Uchida N, Igarashi T, Matsuzawa T, Okada T, Miura S, Suwa Y (2007) Asperities and quasi-static slips on the subducting plate boundary east of Tohoku, Northeast Japan. In: TH Dixon and JC Moore (ed) The seismogenic zone of subduction thrust faults, Columbia University Press, New York, pp 451–475

  • Hatori T (1975) Tsunami magnitude and wave source regions of historical Sanriku tsunamis in Northeast Japan. Bulletin of Earthquake Research Institute 50:397–414

  • Hayashi Y, Tsushima H, Hirata K, Kimura K, Maeda K (2011) Tsunami source area of the 2011 off the Pacific coast of Tohoku Earthquake determined from tsunami arrival times at offshore observation stations. Earth Planets Space 63:809–813

  • Hughes K, Masterlark T, Mooney W (2010) Poroelastic stress-coupling between the M9.2 2004 Sumatra-Andaman and M8.7 2005 Nias earthquakes. Earth and Planetary Science Letters 293:289–299, doi:10.1016/j.epsl.2010.02.043

  • HYPRE (2006) High Performance Preconditioners. User’s Manual, software version 2.0.0. UCRL-CODE-222953. Center for Applied Scientific Computing, Lawrence Livermore National Laboratory

  • Ide S, Baltay A, Beroza G (2011) Shallow dynamic overshoot and energetic deep rupture in the 2011 Mw 9.0 Tohoki-Oki earthquake. Science doi:10.1126/science.1207020

  • IOC/UNESCO (2011) Casualties by the earthquake and tsunami of March 11, 2011. Bulletin No 29 (9/30/2011), Intergovernmental Oceanographic Commission. URL: http://www.ngdc.noaa.gov/hazard/tsunami/pdf/

  • Ioualalen M, Asavanant J, Kaewbanjak N, Grilli S, Kirby J, Watts P (2007) Modeling the 26th December 2004 Indian Ocean tsunami: Case study of impact in Thailand. Journal of Geophysical Research 112(C07024), doi:10.1029/2006JC003850

  • Ito Y, et al. (2011) Frontal wedge deformation near the source region of the 2011 Tohoku-Oki earthquake. Geophysical Research Letters 38:L000G05, doi:10.1029/2011GL048355

  • Ji C, Wald DJ, Helmberger DV (2002) Source description of the 1999 Hector Mine, California, earthquake, part I: Wavelet domain inversion theory and resolution analysis. Bulletin of the Seismological Society of America 92:1192–1207

  • Karlsson J, Skelton A, Sanden M, Ioualalen M, Kaewbanjak N, and J Asavanant NP, von Matern A (2009) Reconstructions of the coastal impact of the 2004 Indian Ocean tsunami in the Khao Lak area, Thailand. Journal of Geophysical Research 114(C10023), doi:10.1029/2009JC005516

  • Kato T, Terada Y, Ito K, Hattori R, Abe T, Miyake T, Koshimura S, Nagai T (2005) Tsunami due to the 2004 September 5th off the Kii peninsula earthquake, Japan, recorded by a new GPS buoy. Earth Planets Space 57:297–301

  • Kennedy AB, Chen Q, Kirby JT, Dalrymple RA (2000) Boussinesq Modeling Of Wave Transformation, Breaking, And Run-Up. I: 1D. J Waterway, Port, Coastal And Ocean Engrng 126(1):39–47

  • Kennedy AB, Kirby JT, Chen Q, Dalrymple RA (2001) Determination of inverse depths using direct Boussinesq modelling. Wave Motion 33:225–243

  • Kim DH, Lynett PJ (2011) Dispersive and nonhydrostatic pressure effects at the front of surges. Journal of Hydraulic Engineering 137(7):754–765, doi:10.1061/(ASCE)HY.1943-7900.0000345

  • Kirby JT, Pophet N, Shi F, Grilli ST (2009) Basin scale tsunami propagation modeling using boussinesq models: Parallel implementation in spherical coordinates. In Proc WCCE-ECCE-TCCE Joint Conf on Earthquake and Tsunami (Istanbul, Turkey, June 22-24) paper 100:(published on CD)

  • Kirby JT, Shi F, Harris JC, Grilli ST (2012) Sensitivity analysis of trans-oceanic tsunami propagation to dispersive and Coriolis effects. Ocean Modeling (in revision):42 pp.

  • Koper KD, Hutko AR, Lay T, Ammon CJ, Kanamori H (2011) Frequency-dependent rupture process of the 11 March 2011 Mw 9.0 Tohoku earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models. Earth Planets Space 58:1–4

  • Kowalik Z, Murty TS (1993) Numerical modeling of ocean dynamics. World Scientific Pub.

  • Lay T, Ammon C, Kanamori H, Xue L, Kim M (2011a) Possible large near-trench slip during the 2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 63:687–692

  • Lay T, Yamazaki Y, Ammon CJ, Cheung KF, Kanamori H (2011b) The great 2011 Earthquake off the Pacific coast of Tohoku (Mw 9.0): Comparison of deep-water tsunami signals with finite-fault rupture model predictions. Earth Planets Space 63:797–801

  • Liang Q, Marche F (2009) Numerical resolution of well-balanced shallow water equations with complex source terms. Advances in Water Resources 32:873–884

  • Ma G, Shi F, Kirby JT (2012) Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Modeling 43-44:22–35

  • Madsen PA, Fuhrman DR, Schäffer HA (2008) On the solitary wave paradigm for tsunamis. J Geophys Res 113(C12012), doi:10.1029/2008JC004932

  • Masterlark T (2003) Finite element model predictions of static deformation from dislocation sources in a subduction zone: Sensitivities to homogeneous, isotropic, Poisson-solid, and half-space assumptions. J Geophys Res 108(B11):17pp, doi:10.1029/2002JB002296

  • Masterlark T, Hughes K (2008) The next generation of deformation models for the 2004 M9 Sumatra-Andaman Earthquake. Geophysical Research Letters 35:5 pp, doi:10.1029/2008GL035198

  • Minoura K, Imamura F, Sugawara D, Kono Y, Iwashita T (2001) The 869 Jogan tsunami deposit and recurrence interval of large-scale tsunami on the Pacific coast of northeast Japan. Journal of Natural Disaster Science 23(2):83–88

  • Mori N, Takahashi T, The 2011 Tohoku Earthquake Tsunami Joint Survey Group (2012) Nationwide Post Event Survey and Analysis of the 2011 Tohoku Earthquake Tsunami. Coastal Engineering Journal 54(1):1250001.

  • Mori N, Takahashi T, Yasuda T, Yanagisawa H (2011) Survey of 2011 Tohoku earthquake tsunami inundation and run-up. Geophysical Research Letters 38(L00G14):6 pp., doi:10.1029/2011GL049210

  • Okada Y (1985) Surface deformation due to shear and tensile faults in a half space. Bulletin of the Seismological Society of America 75(4):1135–1154

  • Ozawa S, Nishimura T, Suito H, Kobayashi T, Tobita M, Imakiire T (2011) Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature 475(7356):373–376, doi:10.1038/nature10227

  • Pararas-Carayannis G (2011) Tsunamigenic source mechanism and efficiency of the March 11, 2011 Sanriku earthquake in Japan. Science of Tsunami Hazards 30(2):126–152

  • Pollitz F, Bürgmann R, Banerjee P (2011) Geodetic slip model of the 2011 M9.0 Tohoku earthquake. Geophysical Research Letters 38:L00G08

  • Ryan W, Carbotte S, Coplan J, O’Hara S, Melkonian A, Arko R, Weissel R, Ferrini V, Goodwillie A, Nitsche F, Bonczkowski J, Zemsky R (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosyst 10(Q03014), doi:10.1029/2008GC002332

  • Saito T, Ito Y, Inazu D, Hino R (2011) Tsunami source of the 2011 Tohoku-oki earthquake, Japan: Inversion analysis based on dispersive tsunami simulations. Geophysical Research Letters 38:L00G19, doi:10.1029/2011GL049089

  • Satake K (1995) Linear and nonlinear computations of the 1992 Nicaragua earthquake tsunami. Pure Appl Geophys 144:455–470

  • Sato M, Ishikawa T, Ujirara N, Yoshida S, Fujita M, Mochizuki M, Asada A (2011) Displacement above the hypocenter of the 2011 Tohoku-Oki Earthquake. Science 332:1395, doi:10.1126/science.1207401

  • Sawai Y, Shishikura M, Komatsubara J (2008) A study of paleotsunami using hard corer in Sendai plain (Sendai City, Natori City, Iwanuma City, Watari Town, Yamamoto Town), Miyagi, Japan. Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology Tsukuba, Japan URL: http://unit.aist.go.jp/actfault-eq/english/reports/h19seika/index.html

  • Seno T, Sakurai T, Stein S (1996) Can the Okhotsk plate be discriminated from the North American plate? Journal of Geophysical Research 101:11,305–11,316

  • Shao G, Li X, Ji C, Maeda T (2011) Focal mechanism and slip history of 2011 Mw 9.1 off the Pacific coast of Tohoku earthquake, constrained with teleseismic body and surface waves. Earth Planets Space 63:559–564

  • Shi F, Kirby JT, Harris JC, Geiman JD, Grilli ST (2012) A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Modeling 43-44:36–51

  • Simons M, Minson S, Sladen A, Ortega F, Jiang J, Owen S, L Meng JPA, Wei S, Chu R, Helmberger D, Kanamori H, Hetland E, Moore A, Webb F (2011) The 2011 Magnitude 9.0 Tohoku-Oki Earthquake: Mosaicking the Megathrust from Seconds to Centuries. Science doi:10.1126/science.1206731

  • Tappin D, Watts P, Grilli S (2008) The Papua New Guinea tsunami of 1998: anatomy of a catastrophic event. Natural Hazards and Earth System Sciences 8:243–266.http://www.nat-hazards-earth-syst-sci.net/8/243/2008/

  • Tehranirad B, Shi F, Kirby JT, Harris JC, Grilli ST (2011) Tsunami benchmark results for fully nonlinear Boussinesq wave model FUNWAVE-TVD, Version 1.0. Tech. rep., No. CACR-11-02, Center for Applied Coastal Research, University of Delaware

  • The 2011 Tohoku Earthquake Tsunami Joint Survey Group (2011) Nationwide field survey of the 2011 off the Pacific coast of Tohoku earthquake tsunami. Journal of Japan Society of Civil Engineers 67(1):63–66

    Google Scholar 

  • Titov VV, Gonzalez FI, Bernard EN, Eble MC, Mojfeld HO, Newman JC, Venturato AJ (2005) Real-time tsunami forecasting: Challenges and solutions. Nat Hazards 35:35–41, doi:10.1007/s11069- 004-2403-3

  • Tonelli M, Petti M (2009) Hybrid finite volume - finite difference scheme for 2DH improved Boussinesq equations. Coast Engrng 56:609–620

  • Tsushima H, Hirata K, Hayashi Y, Kimura YTK, Sakai S, Shinohara M, Kanazawa T, Hino R, Maeda K (2011) Near-field tsunami forecasting using offshore tsunami data from the 2011 off the Pacific coast of Tohoku Earthquake Hiroaki Tsushima. Earth Planets Space 63:821–826

  • Wang H (2000) Theory of linear poroelasticity: With applications to geomechanics. Princeton University Press

  • Watada S, Satake K, Fujii Y (2011) Origin of travel time anomalies of distant tsunami. In: AGU Fall Meeting 2011 poster NH11A

  • Watts P, Grilli ST, Kirby JT, Fryer GJ, Tappin DR (2003) Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards and Earth System Sciences 3:391–402

  • Wei G, Kirby JT (1995) A time-dependent numerical code for extended Boussinesq equations. Journal of Waterway, Port, Coastal and Ocean Engineering 120:251–261

  • Wei G, Kirby JT, Grilli ST, Subramanya R (1995) A fully nonlinear Boussinesq model for surface waves. I. Highly nonlinear, unsteady waves. Journal of Fluid Mechanics 294:71–92

  • Yamaguchi Y, Kahle A, Tsu H, Kawakami T, Pniel M (1998) Overview of advanced space borne thermal emission and reflection radiometer (ASTER). IEEE Trans Geosci Remote Sensing 36:1062–1071

  • Yamamoto S, Kano S, Daiguchi H (1998) An efficient CFD approach for simulating unsteady hypersonic shock-shock interference floes. Comput Fluids 27:571–580

  • Yamazaki Y, Kowalik Z, Cheung KF (2009) Depth-integrated, nonhydrostatic model for wave breaking and run-up. International Journal of Numerical Methods in Fluids 61(5):473–497

  • Yamazaki Y, Lay T, Cheung K, Yue H, Kanamori H (2011a) Modeling near-field tsunami observations to improve finite fault slip models for the 11 March 2011 Tohoku earthquake. Geophysical Research Letters 38:L049130, doi:10.1029/2011GL049130

  • Yamazaki Y, Roeber V, Cheung KF, Lay T (2011b) Modeling the 2011 Tohoku-oki Tsunami and its Impacts on Hawaii. In: Proceedings of OCEANS 2011. Waikoloa, HI, USA. 9 pp.

  • Yamazaki Y, Cheung K, Pawlak G, Lay T (2012) Surges along the Honolulu coast from the 2011 Tohoku tsunami. Geophysical Research Letters 39:L09604, doi:10.1029/2012GL051624

  • Yue H, Lay T (2011) Inversion of high-rate (1 sps) GPS data for rupture process of the 11 March 2011 Tohoku earthquake (Mw 9.1). Geophysical Research Letters 38:L00G09, doi:10.1029/2011GL048700

  • Zhou JG, Gauson DM, Mingham CG, Ingraml DM (2001) The surface gradient method for the treatment of source terms in the shallow water equations. J Comp Phys 168:1–25

Download references

Acknowledgments

The first five authors wish to acknowledge support from grant EAR-09-11499/11466 of the US National Sciences Foundation (NSF) Geophysics Program. The last two authors acknowledge the Coastal Geosciences Program, Office of Naval Research for support for development of the FUNWAVE-TVD and NHWAVE models. Academic licensing and technical support for Abaqus software is provided by Dassault Systèmes Simulia Corp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan T. Grilli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grilli, S.T., Harris, J.C., Tajalli Bakhsh, T.S. et al. Numerical Simulation of the 2011 Tohoku Tsunami Based on a New Transient FEM Co-seismic Source: Comparison to Far- and Near-Field Observations. Pure Appl. Geophys. 170, 1333–1359 (2013). https://doi.org/10.1007/s00024-012-0528-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-012-0528-y

Keywords

Navigation