Skip to main content
Log in

Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling?

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

In recent years, a strong debate has emerged in the hydrologic literature regarding what constitutes an appropriate framework for uncertainty estimation. Particularly, there is strong disagreement whether an uncertainty framework should have its roots within a proper statistical (Bayesian) context, or whether such a framework should be based on a different philosophy and implement informal measures and weaker inference to summarize parameter and predictive distributions. In this paper, we compare a formal Bayesian approach using Markov Chain Monte Carlo (MCMC) with generalized likelihood uncertainty estimation (GLUE) for assessing uncertainty in conceptual watershed modeling. Our formal Bayesian approach is implemented using the recently developed differential evolution adaptive metropolis (DREAM) MCMC scheme with a likelihood function that explicitly considers model structural, input and parameter uncertainty. Our results demonstrate that DREAM and GLUE can generate very similar estimates of total streamflow uncertainty. This suggests that formal and informal Bayesian approaches have more common ground than the hydrologic literature and ongoing debate might suggest. The main advantage of formal approaches is, however, that they attempt to disentangle the effect of forcing, parameter and model structural error on total predictive uncertainty. This is key to improving hydrologic theory and to better understand and predict the flow of water through catchments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aronica G, Bates PD, Horritt MS (2002) Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE. Hydrol Proc 16:2001–2016

    Article  Google Scholar 

  • Bates BC, Campbell EP (2001) A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling. Water Resour Res 37(4):937–948

    Article  Google Scholar 

  • Beven KJ (1989) Changing ideas in hydrology. The case of physically based models. J Hydrol 105:157–172

    Article  Google Scholar 

  • Beven KJ (1993) Prophecy, reality and uncertainty in distributed hydrological modeling. Adv Water Res 16(1):41–51

    Article  Google Scholar 

  • Beven K (2006) A manifesto for the equifinality thesis. J Hydrol 320:18–36. doi:10.1016/j.jhydrol.2005.07.007

    Article  Google Scholar 

  • Beven KJ, Binley AM (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol Proc 6:279–298

    Article  Google Scholar 

  • Beven K, Smith PJ, Freer JE (2008) So why would a modeller choose to be incoherent? J Hydrol 354:15–32. doi:10.1016/j.jhydrol.2008.02.007

    Article  Google Scholar 

  • Blasone RS, Vrugt JA, Madsen H, Rosbjerg D, Zyvoloski GA, Robinson BA (2008) Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Adv Water Res 31:630–648. doi:10.1016/j.advwatres.2007.12.003

    Article  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc Ser B 26:211–246

    Google Scholar 

  • Boyle DP (2000) Multicriteria calibration of hydrologic models. Ph.D. dissertation, Department of Hydrology and Water Resources, University of Arizona, Tucson

  • Brazier RE, Beven KJ, Anthony SG, Rowan JS (2001) Implications of model uncertainty for the mapping of hillslope-scale soil erosion predictions. Earth Surf Proc Land 26:1333–1352

    Article  Google Scholar 

  • Christensen S (2004) A synthetic groundwater modeling study of the accuracy of GLUE uncertainty intervals. Nordic Hydrol 35:45–59

    Google Scholar 

  • Duan Q, Gupta VK, Sorooshian S (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28:1015–1031

    Article  Google Scholar 

  • Engeland K, Gottschalk L (2002) Bayesian estimation of parameters in a regional hydrological model. Hydrol Earth Syst Sci 6(5):883–898

    Google Scholar 

  • Feyen L, Beven KJ, De Smedt F, Freer JE (2001) Stochastic capture zone delineation within the generalized likelihood uncertainty estimation methodology: conditioning on head observations. Water Resour Res 37(3):625–638

    Article  Google Scholar 

  • Franks SW, Beven KJ, Quinn PF, Wright IR (1997) On the sensitivity of soil-vegetation-atmosphere transfer (SVAT) schemes: equifinality and the problem of robust calibration. Agric For Met 86:63–75

    Article  Google Scholar 

  • Freer JE, Beven K, Ambroise B (1996) Bayesian estimation of uncertainty in runoff prediction and the value of data: an application of the GLUE approach. Water Resour Res 32(7):2161–2173

    Article  Google Scholar 

  • Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–472

    Article  Google Scholar 

  • Hankin BG, Hardy R, Kettle H, Beven KJ (2001) Using CFD in a GLUE framework to model the flow and dispersion characteristics of a natural fluvial dead zone. Earth Surf Proc Land 26:667–687

    Article  Google Scholar 

  • Hansson K, Lundin C (2006) Equifinality and sensitivity in freezing and thawing simulations of laboratory and in situ data. Cold Reg Sci Tech 44:20–37

    Article  Google Scholar 

  • Hornberger GM, Spear RC (1981) An approach to the preliminary analysis of environmental systems. J Env Manag 12:7–18

    Google Scholar 

  • Iorgulescu I, Beven K, Musy A (2005) Data-based modelling of runoff and chemical tracer concentrations in the Haute-Mentue research catchment (Switzerland). Hydrol Proc 19:2557–2573. doi:10.1002/hyp.5731

    Article  Google Scholar 

  • Jensen JB (2003) Parameter and uncertainty estimation in groundwater modelling. PhD thesis, Department of Civil Engineering, Aalborg University, Series Paper No. 23

  • Kavetski D, Kuczera G, Franks SW (2006a) Bayesian analysis of input uncertainty in hydrological modeling: theory. Water Resour Res 42:W03407. doi:10.1029/2005WR004368

    Article  Google Scholar 

  • Kavetski D, Kuczera G, Franks SW (2006b) Bayesian analysis of input uncertainty in hydrological modeling: application. Water Resour Res 42:W03408. doi:10.1029/2005WR004376

    Article  Google Scholar 

  • Kuczera G, Parent E (1998) Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the metropolis algorithm. J Hydrol 211:69–85

    Article  Google Scholar 

  • Lamb R, Beven K, Myrabø S (1998) Use of spatially distributed water table observations to constrain uncertainty in a rainfall-runoff model. Adv Water Res 22(4):305–317

    Article  Google Scholar 

  • Liu Y, Gupta HV (2007) Uncertainty in hydrologic modeling: toward an integrated data assimilation framework. Water Resour Res 43:W07401. doi:10.1029/2006WR005756

    Article  Google Scholar 

  • Mantovan P, Todini E (2006) Hydrological forecasting uncertainty assessment: incoherence of the GLUE methodology. J Hydrol 330:368–381. doi:10.1016/j.hydrol.2006.04.046

    Article  Google Scholar 

  • Marshall L, Nott D, Sharma A (2004) A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling. Water Resour Res 40:W02501. doi:10.1029/2003WR002378

    Article  Google Scholar 

  • McMichael CE, Hope AS, Loaiciga HA (2006) Distributed hydrological modeling in California semi-arid shrublands: MIKE SHE model calibration and uncertainty estimation. J Hydrol 317:307–324

    Article  Google Scholar 

  • Mertens J, Madsen H, Feyen L, Jacques D, Feyen J (2004) Including prior information in the estimation of effective soil parameters in unsaturated zone modelling. J Hydrol 294(4):251–269

    Article  Google Scholar 

  • Misirli F, Gupta HV, Sorooshian S, Thiemann M (2003) Bayesian recursive estimation of parameter and output uncertainty for watershed models. In: Duan et al (eds) Calibration of watershed models, Water Sci. Appl. Ser., vol 6. AGU, Washington, pp 113–124

  • Montanari A (2005) Large sample behaviors of the generalized likelihood uncertainty estimation (GLUE) in assessing the uncertainty of rainfall-runoff simulations. Water Resour Res 41:W08406. doi:10.1029/2004WR003826

    Article  Google Scholar 

  • Montanari A (2007) What do we mean by uncertainty? The need for a consistent wording about uncertainty assessment in hydrology. Hydrol Proc 21(6):841–845. doi:10.1002/hyp.6623

    Article  Google Scholar 

  • Muleta MK, Nicklow JW (2005) Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model. J Hydrol 306:127–145

    Article  Google Scholar 

  • Romanowicz RJ, Beven KJ, Tawn J (1996) Bayesian calibration of flood inundation models. In: Anderson MG, Walling DE (eds) Floodplain processes. Wiley, Chichester, pp 333–360

    Google Scholar 

  • Sorooshian S, Dracup JA (1980) Stochastic parameter estimation procedures for hydrologic rainfall-runoff models: correlated and heteroscedastic error cases. Water Resour Res 16(2):430–442

    Article  Google Scholar 

  • Tadesse A, Anagnostou EN (2005) A statistical approach to ground radar-rainfall estimation. J Atm Ocean Tech 22(11):1055–1071

    Google Scholar 

  • Villarini G, Krajewski WF (2008) Empirically-based modeling of spatial sampling uncetainties associated with rainfall measurements by rain gauges. Adv Water Resour 31(7):1015–1023. doi:10.1016/j.advwatres.2008.04.007

    Article  Google Scholar 

  • Vogel RM, Stedinger JR, Batchelder R, Lee SU (2008) Appraisal of the Generalized Likelihood Uncertainty Estimation (GLUE) method. Water Resour Res (in review)

  • Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003) A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39(8):1201. doi:10.1029/2002WR001642

    Article  Google Scholar 

  • Vrugt JA, Gupta HV, Sorooshian S, Wagener T, Bouten W (2006) Application of stochastic parameter optimization to the Sacramento Soil Moisture Accounting model. J Hydrol 325(1–4):288–307. doi:10.1016/j.hydrol.2005.10.041

    Article  Google Scholar 

  • Vrugt JA, ter Braak CJF, Diks CGH, Robinson BA, Hyman JM, Higdon D (2008a) Accelerating Markov chain Monte Carlo simulation by self-adaptive differential evolution with randomized subspace sampling. Water Resour Res (in review)

  • Vrugt JA, ter Braak CJF, Clark MP, Hyman JM, Robinson BA (2008b) Treatment of input uncertainty in hydrologic modeling: doing hydrology nackwards with Markov chain Monte Carlo simulation. Water Resour Res (in press)

  • Wagener T, Boyle DP, Lees MJ, Wheater HS, Gupta HV, Sorooshian S (2001) A framework for development and application of hydrologic models. Hydrol Earth Syst Sci 5(1):13–26

    Article  Google Scholar 

  • Wang X, He X, Williams JR, Izaurralde RC, Atwood JD (2005) Sensitivity and uncertainty analyses of crop yields and soil organic carbon simulated with EPIC. Trans Am Soc Agr Eng 48(3):1041–1054

    CAS  Google Scholar 

Download references

Acknowledgments

The first author is supported by a J. Robert Oppenheimer Fellowship from the LANL postdoctoral program. We would like to thank Sander Huisman, Jan Mertens, Benedikt Scharnagl and Jan Vanderborght for stimulating discussions. The authors gratefully acknowledge the many comments and suggestions of Alberto Montanari, Keith Beven and an anonymous reviewer that have greatly enhanced the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasper A. Vrugt.

Appendix

Appendix

1.1 Calculation of predictive uncertainty from MCMC simulation

Assume that for each MCMC draw x j the distribution of each model outcome y i , i = 1,...,n is F and that F(c) = Pr(y < c|x j) can be calculated exactly for any value of c. For example, from the MCMC runs using Eq. 9 and AR-1 normally distributed model and measurement error as in Eq. 6, F is a Student distribution t v (μ, σ2) with vn, \(\mu = f({\bf x}^{j},{\hat{\phi}})\) and σ2 = s 2/(1−ρ2) with s 2 in Eq. 14. Now Pr(y < c) can be estimated from the J MCMC draws using the average of Pr(y < c|x j). To estimate a 100α% percentile we thus need to find c such that:

$$ \frac{1}{J}\sum_{j=1}^{J} Pr(y < c|{{\mathbf{x}}}^{j}) = \alpha $$
(16)

This can be done numerically by a root-finding algorithm. A 95% confidence interval is constructed by calculating the 2.5 and 97.5% percentile, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vrugt, J.A., ter Braak, C.J.F., Gupta, H.V. et al. Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling?. Stoch Environ Res Risk Assess 23, 1011–1026 (2009). https://doi.org/10.1007/s00477-008-0274-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-008-0274-y

Keywords

Navigation