Skip to main content
Log in

Heat stress affects the cytoskeleton and the delivery of sucrose synthase in tobacco pollen tubes

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Heat stress changes isoform content and distribution of cytoskeletal subunits in pollen tubes affecting accumulation of secretory vesicles and distribution of sucrose synthase, an enzyme involved in cell wall synthesis.

Plants are sessile organisms and are therefore exposed to damages caused by the predictable increase in temperature. We have analyzed the effects of temperatures on the development of pollen tubes by focusing on the cytoskeleton and related processes, such as vesicular transport and cell wall synthesis. First, we show that heat stress affects pollen germination and, to a lesser extent, pollen tube growth. Both, microtubules and actin filaments, are damaged by heat treatment and changes of actin and tubulin isoforms were observed in both cases. Damages to actin filaments mainly concern the actin array present in the subapex, a region critical for determining organelle and vesicle content in the pollen tube apex. In support of this, green fluorescent protein-labeled vesicles are arranged differently between heat-stressed and control samples. In addition, newly secreted cell wall material (labeled by propidium iodide) shows an altered distribution. Damage induced by heat stress also extends to proteins that bind actin and participate in cell wall synthesis, such as sucrose synthase. Ultimately, heat stress affects the cytoskeleton thereby causing alterations in the process of vesicular transport and cell wall deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

HSP:

Heat-shock protein

PI:

Propidium iodide

References

  • Abdrakhamanova A, Wang QY, Khokhlova L, Nick P (2003) Is microtubule disassembly a trigger for cold acclimation? Plant Cell Physiol 44:676–686

    Article  PubMed  CAS  Google Scholar 

  • Asthir B, Bala S, Bains N (2013) Metabolic profiling of grain carbon and nitrogen in wheat as influenced by high temperature. Cereal Res Commun 41:230–242

    Article  CAS  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Biagini G, Faleri C, Cresti M, Cai G (2014) Sucrose concentration in the growth medium affects the cell wall composition of tobacco pollen tubes. Plant Reprod 27:129–144

    Article  PubMed  CAS  Google Scholar 

  • Borderies G, Jamet E, Lafitte C, Rossignol M, Jauneau A, Boudart G, Monsarrat B, Esquerre-Tugaye MT, Boudet A, Pont-Lezica R (2003) Proteomics of loosely bound cell wall proteins of Arabidopsis thaliana cell suspension cultures: a critical analysis. Electrophoresis 24:3421–3432

    Article  PubMed  CAS  Google Scholar 

  • Boudaoud A, Burian A, Borowska-Wykret D, Uyttewaal M, Wrzalik R, Kwiatkowska D, Hamant O (2014) FibrilTool, an ImageJ plug-into quantify fibrillar structures in raw microscopy images. Nat Protoc 9:457–463

    Article  PubMed  CAS  Google Scholar 

  • Brewbaker JL, Kwack BH (1963) The essential role of calcium ion in pollen germination and pollen tube growth. Am J Bot 50:859–865

    Article  CAS  Google Scholar 

  • Brill E, van Thournout M, White RG, Llewellyn D, Campbell PM, Engelen S, Ruan YL, Arioli T, Furbank RT (2011) A novel isoform of sucrose synthase is targeted to the cell wall during secondary cell wall synthesis in cotton fiber. Plant Physiol 157:40–54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai G, Romagnoli S, Moscatelli A, Ovidi E, Gambellini G, Tiezzi A, Cresti M (2000) Identification and characterization of a novel microtubule-based motor associated with membranous organelles in tobacco pollen tubes. Plant Cell 12:1719–1736

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai G, Faleri C, Del Casino C, Emons AMC, Cresti M (2011) Distribution of callose synthase, cellulose synthase and sucrose synthase in tobacco pollen tube is controlled in dissimilar ways by actin filaments and microtubules. Plant Physiol 155:1169–1190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai G, Parrotta L, Cresti M (2015) Organelle trafficking, the cytoskeleton, and pollen tube growth. J Integr Plant Biol 57:63–78

    Article  PubMed  Google Scholar 

  • Cardenas L, Lovy-Wheeler A, Wilsen KL, Hepler PK (2005) Actin polymerization promotes the reversal of streaming in the apex of pollen tubes. Cell Motil Cytoskel 61:112–127

    Article  CAS  Google Scholar 

  • Ciampolini F, Shivanna KR, Cresti M (1991) High humidity and heat stress causes dissociation of endoplasmic reticulum in tobacco pollen. Bot Acta 104:110–116

    Article  Google Scholar 

  • Cole RA, Fowler JE (2006) Polarized growth: maintaining focus on the tip. Curr Opin Plant Biol 9:579–588

    Article  PubMed  CAS  Google Scholar 

  • Daher FB, Geitmann A (2011) Actin is involved in pollen tube tropism through redefining the spatial targeting of secretory vesicles. Traffic 12:1537–1551

    Article  CAS  Google Scholar 

  • de Graaf BHJ, Cheung AY, Andreyeva T, Levasseur K, Kieliszewski M, Hm W (2005) Rab11 GTPase regulated membrane trafficking is crucial for tip-focused pollen tube growth in tobacco. Plant Cell 17:2564–2579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Del Casino C, Li Y, Moscatelli A, Scali M, Tiezzi A, Cresti M (1993) Distribution of microtubules during the growth of tobacco pollen tubes. Biol Cell 79:125–132

    Article  Google Scholar 

  • Devasirvatham V, Gaur PM, Mallikarjuna N, Tokachichu RN, Trethowan RM, Tan DKY (2012) Effect of high temperature on the reproductive development of chickpea genotypes under controlled environments. Funct Plant Biol 39:1009–1018

    Article  Google Scholar 

  • Dong H, Pei W, Haiyun R (2012) Actin fringe is correlated with tip growth velocity of pollen tubes. Mol Plant 5:1160–1162

    Article  PubMed  CAS  Google Scholar 

  • Duke ER, Doehlert DC (1996) Effects of heat stress on enzyme activities and transcript levels in developing maize kernels grown in culture. Environ Exp Bot 36:199–208

    Article  CAS  Google Scholar 

  • Duncan KA, Huber SC (2007) Sucrose synthase oligomerization and F-actin association are regulated by sucrose concentration and phosphorylation. Plant Cell Physiol 48:1612–1623

    Article  PubMed  CAS  Google Scholar 

  • Durand TC, Sergeant K, Carpin S, Label P, Morabito D, Hausman JF, Renaut J (2012) Screening for changes in leaf and cambial proteome of Populus tremula × P. alba under different heat constraints. J Plant Physiol 169:1698–1718

    Article  PubMed  CAS  Google Scholar 

  • Geitmann A, Li Y-Q, Cresti M (1996) The role of cytoskeleton and dictyosome activity in the pulsatory growth of Nicotiana tabacum and Petunia hybrida pollen tubes. Bot Acta 109:102–109

    Article  CAS  Google Scholar 

  • Hardin SC, Winter H, Huber SC (2004) Phosphorylation of the amino terminus of maize sucrose synthase in relation to membrane association and enzyme activity. Plant Physiol 134:1427–1438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hedhly A (2011) Sensitivity of flowering plant gametophytes to temperature fluctuations. Environ Exp Bot 74:9–16

    Article  Google Scholar 

  • Heinlein M, Starlinger P (1989) Tissue- and cell-specific expression of the two sucrose synthase isoenzymes in developing maize kernels. Mol Gen Genet 215:441–446

    Article  CAS  Google Scholar 

  • Hepler PK, Winship LJ (2014) The pollen tube clear zone: clues to the mechanism of polarized growth. J Integr Plant Biol 57:79–92

    Article  CAS  Google Scholar 

  • Kandasamy MK, Kristen U (1989) Ultrastructural responses of tobacco pollen tubes to heat shock. Protoplasma 153:104–110

    Article  Google Scholar 

  • Kang S, Chen S, Dai S (2010) Proteomics characteristics of rice leaves in response to environmental factors. Front Biol China 5:246–254

    Article  CAS  Google Scholar 

  • Kaushal N, Awasthi R, Gupta K, Gaur P, Siddique KHM, Nayyar H (2013) Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Funct Plant Biol 40:1334–1349

    Article  CAS  Google Scholar 

  • Kost B (2008) Spatial control of Rho (Rac-Rop) signaling in tip-growing plant cells. Trends Cell Biol 18:119–127

    Article  PubMed  CAS  Google Scholar 

  • Ledesma N, Sugiyama N (2005) Pollen quality and performance in strawberry plants exposed to high temperature stress. J Am Soc Hort Sci 130:341–347

    Google Scholar 

  • Li Y-Q, Faleri C, Geitmann A, Zhang HQ, Cresti M (1995) Immunogold localization of arabinogalactan proteins, unesterified and esterified pectins in pollen grains and pollen tubes of Nicotiana tabacum L. Protoplasma 189:26–36

    Article  CAS  Google Scholar 

  • Li Z, Palmer WM, Martin AP, Wang R, Rainsford F, Jin Y, Patrick JW, Yang Y, Ruan YL (2011) High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit. J Exp Bot 63:1155–1166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Z, Yuan YL, Liu SQ, Yu XN, Rao LQ (2006) Screening for high-temperature tolerant cotton cultivars by testing in vitro pollen germination, pollen tube growth and boll retention. J Integr Plant Biol 48:706–714

    Article  Google Scholar 

  • Lorenzen JH, Lafta AM (1996) Effect of heat stress on enzymes that affect sucrose levels in potato shoots. J Am Soc Hort Sci 121:1152–1156

    CAS  Google Scholar 

  • Lovy-Wheeler A, Wilsen KL, Baskin TI, Hepler PK (2005) Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta 221:95–104

    Article  PubMed  CAS  Google Scholar 

  • Magnard JL, Vergne P, Dumas C (1996) Complexity and genetic variability of heat-shock protein expression in isolated maize microspores. Plant Physiol 111:1085–1096

    PubMed  PubMed Central  CAS  Google Scholar 

  • Malerba M, Crosti P, Cerana R (2010) Effect of heat stress on actin cytoskeleton and endoplasmic reticulum of tobacco BY-2 cultured cells and its inhibition by Co2+. Protoplasma 239:23–30

    Article  PubMed  CAS  Google Scholar 

  • Mascarenhas JP, Crone DE (1996) Pollen and the heat shock response. Sex Plant Reprod 9:370–374

    Article  Google Scholar 

  • McKenna ST, Kunkel JG, Bosch M, Rounds CM, Vidali L, Winship LJ, Hepler PK (2009) Exocytosis precedes and predicts the increase in growth in oscillating pollen tubes. Plant Cell 21:3026–3040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mirzaei M, Soltani N, Sarhadi E, Pascovici D, Keighley T, Salekdeh GH, Haynes PA, Atwell BJ (2012) Shotgun proteomic analysis of long-distance drought signaling in rice roots. J Proteome Res 11:348–358

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125

    Article  PubMed  CAS  Google Scholar 

  • Mo Y, Liang G, Shi W, Xie J (2011) Metabolic responses of alfalfa (Medicago sativa L.) leaves to low and high temperature induced stresses. Afr J Biotech 10:1117–1124

    CAS  Google Scholar 

  • Müller J, Menzel D, Šamaj J (2007) Cell-type-specific disruption and recovery of the cytoskeleton in Arabidopsis thaliana epidermal root cells upon heat shock stress. Protoplasma 230:231–242

    Article  PubMed  Google Scholar 

  • Parrotta L, Cresti M, Cai G (2013) Heat-shock protein 70 binds microtubules and interacts with kinesin in tobacco pollen tubes. Cytoskeleton 70:522–537

    Article  PubMed  CAS  Google Scholar 

  • Parrotta L, Cresti M, Cai G (2014) Accumulation and post-translational modifications of plant tubulins. Plant Biol 16:521–527

    Article  PubMed  CAS  Google Scholar 

  • Patterson KR, Ward SM, Combs B, Voss K, Kanaan NM, Morfini G, Brady ST, Gamblin TC, Binder LI (2011) Heat shock protein 70 prevents both tau aggregation and the inhibitory effects of preexisting tau aggregates on fast axonal transport. Biochemistry 50:10300–10310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Persia D, Cai G, Del Casino C, Faleri C, Willemse MTM, Cresti M (2008) Sucrose synthase is associated with the cell wall of tobacco pollen tubes. Plant Physiol 147:1603–1618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petkova V, Nikolova V, Kalapchieva SH, Stoeva V, Topalova E, Angelova S (2009) Physiological response and pollen viability of Pisum sativum genotypes under high temperature influence. Acta Hort 830:665–671

    Article  Google Scholar 

  • Pivovarova AV, Chebotareva NA, Chernik IS, Gusev NB, Levitsky DI (2007) Small heat shock protein Hsp27 prevents heat-induced aggregation of F-actin by forming soluble complexes with denatured actin. FEBS J 274:5937–5948

    Article  PubMed  CAS  Google Scholar 

  • Porter JR (2005) Rising temperatures are likely to reduce crop yields. Nature 436:174

    Article  PubMed  CAS  Google Scholar 

  • Prasad PVV, Pisipati SR, Mutava RN, Tuinstra MR (2008) Sensitivity of grain sorghum to high temperature stress during reproductive development. Crop Sci 48:1911–1917

    Article  Google Scholar 

  • Pressman E, Harel D, Zamski E, Shaked R, Althan L, Rosenfeld K, Firon N (2006) The effect of high temperatures on the expression and activity of sucrose-cleaving enzymes during tomato (Lycopersicon esculentum) anther development. J Hort Sci Biotech 81:341–348

    Google Scholar 

  • Rounds CM, Hepler PK, Winship LJ (2014) The apical actin fringe contributes to localized cell wall deposition and polarized growth in the lily pollen tube. Plant Physiol 166:139–151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saini HS, Aspinall D (1982) Abnormal sporogenesis in wheat (Triticum aestivum L.) induced by short periods of high temperature. Ann Bot 49:835–846

    Google Scholar 

  • Saini HS, Sedgley M, Aspinall D (1983) Effect of heat stress during floral development on pollen tube growth and ovary anatomy in wheat (Triticum aestivum L.). Aust J Plant Physiol 10:137–144

    Article  Google Scholar 

  • Salnikov VV, Grimson MJ, Seagull RW, Haigler CH (2003) Localization of sucrose synthase and callose in freeze-substituted secondary-wall-stage cotton fibers. Protoplasma 221:175–184

    PubMed  CAS  Google Scholar 

  • Sato S, Kamiyama M, Iwata T, Makita N, Furukawa H, Ikeda H (2006) Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Ann Bot 97:731–738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Serafini L, Hann JB, Kültz D, Tomanek L (2011) The proteomic response of sea squirts (genus Ciona) to acute heat stress: a global perspective on the thermal stability of proteins. Comp Biochem Phys D 6:322–334

    CAS  Google Scholar 

  • Shivanna KR, Linskens HF, Cresti M (1991) Responses of tobacco pollen to high humidity and heat stress: viability and germinability in vitro and in vivo. Sex Plant Reprod 4:104–109

    Article  Google Scholar 

  • Silflow CD, Sun X, Haas NA, Foley JW, Lefebvre PA (2011) The Hsp70 and Hsp40 chaperones influence microtubule stability in Chlamydomonas. Genetics 189:1249–1260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smertenko A, Dráber P, Viklický V, Opatrný Z (1997) Heat stress affects the organization of microtubules and cell division in Nicotiana tabacum cells. Plant Cell Environ 20:1534–1542

    Article  Google Scholar 

  • Snider JL, Oosterhuis DM, Kawakami EM (2011a) Diurnal pollen tube growth rate is slowed by high temperature in field-grown Gossypium hirsutum pistils. J Plant Physiol 168:441–448

    Article  PubMed  CAS  Google Scholar 

  • Snider JL, Oosterhuis DM, Loka DA, Kawakami EM (2011b) High temperature limits in vivo pollen tube growth rates by altering diurnal carbohydrate balance in field-grown Gossypium hirsutum pistils. J Plant Physiol 168:1168–1175

    Article  PubMed  CAS  Google Scholar 

  • Staiger CJ, Poulter NS, Henty JL, Franklin-Tong VE, Blanchoin L (2010) Regulation of actin dynamics by actin-binding proteins in pollen. J Exp Bot 61:1969–1986

    Article  PubMed  CAS  Google Scholar 

  • Teixeira EI, Fischer G, van Velthuizen H, Walter C, Ewert F (2013) Global hot-spots of heat stress on agricultural crops due to climate change. Agri Forest Meteorol 170:206–215

    Article  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang J, Qian D, Fan T, Jia H, An L, Xiang Y (2012) Arabidopsis actin capping protein (AtCP) subunits have different expression patterns, and downregulation of AtCPB confers increased thermotolerance of Arabidopsis after heat shock stress. Plant Sci 193–194:110–119

    Article  PubMed  CAS  Google Scholar 

  • Weis F, Moullintraffort L, Heichette C, Chretien D, Garnier C (2010) The 90-kDa heat shock protein Hsp90 protects tubulin against thermal denaturation. J Biol Chem 285:9525–9534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winter H, Huber JL, Huber SC (1998) Identification of sucrose synthase as an actin-binding protein. FEBS Lett 430:205–208

    Article  PubMed  CAS  Google Scholar 

  • Wollenweber B, Porter JR, Schellberg J (2003) Lack of interaction between extreme high temperature events at vegetative and reproductive growth stages in wheat. J Agron Crop Sci 189:142–150

    Article  Google Scholar 

  • Xu C, Huang B (2008) Root proteomic responses to heat stress in two Agrostis grass species contrasting in heat tolerance. J Exp Bot 59:4183–4194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan SH, Yin YP, Li WY, Li Y, Liang TB, Wu YH, Geng QH, Wang ZL (2008) Effect of high temperature after anthesis on starch formation of two wheat cultivars differing in heat tolerance. Acta Ecol Sin 28:6138–6147

    Google Scholar 

  • Young TE, Ling J, Geisler-Lee CJ, Tanguay RL, Caldwell C, Gallie DR (2001) Developmental and thermal regulation of the maize heat shock protein, HSP101. Plant Physiol 127:777–791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, He J, Lee D, McCormick S (2010) Interdependence of endomembrane trafficking and actin dynamics during polarized growth of Arabidopsis pollen tubes. Plant Physiol 152:2200–2210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Jiang X, Li T, Chang T (2012) Effect of elevated temperature stress on the production and metabolism of photosynthate in tomato (Lycopersicon esculentum L.) leaves. J Hort Sci Biotech 87:293–298

    CAS  Google Scholar 

  • Zhao H, Ren H (2006) Rop1Ps promote actin cytoskeleton dynamics and control the tip growth of lily pollen tube. Sex Plant Reprod 19:83–91

    Article  CAS  Google Scholar 

  • Zhao H, Dai T, Jiang D, Cao W (2008) Effects of high temperature on key enzymes involved in starch and protein formation in grains of two wheat cultivars. J Agron Crop Sci 194:47–54

    Article  CAS  Google Scholar 

  • Zheng Y, Anderson S, Zhang Y, Garavito RM (2011) The structure of sucrose synthase-1 from Arabidopsis thaliana and its functional implications. J Biol Chem 286:36108–36118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61:1959–1968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank the employees of the Botanical Garden of University of Siena for kindly supporting us and for growing tobacco plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampiero Cai.

Ethics declarations

Conflict of interest

All authors of the manuscript declare that they have no potential sources or conflict/financial interest. The research involves neither human participants nor animals.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1a, b, c

Original images of actin filaments in control pollen tubes without the overlay used by ImageJ to calculate the anisotropy of cytoskeleton. Arrows in c show the presence of the actin fringe. Bars 10 µm. (PDF 543 kb)

Online Resource 2

Control of immunogold labeling by omitting primary antibody to sucrose synthase. No signal was detected. Bar 500 nm. 2 (PDF 646 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parrotta, L., Faleri, C., Cresti, M. et al. Heat stress affects the cytoskeleton and the delivery of sucrose synthase in tobacco pollen tubes. Planta 243, 43–63 (2016). https://doi.org/10.1007/s00425-015-2394-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2394-1

Keywords

Navigation