Skip to main content
Log in

Production of transgenic barrel medic (Medicago truncatula Gaernt.) using the ipt-type MAT vector system and impairment of Recombinase-mediated excision events

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Expression of the uidA reporter gene was tested in transformation experiments of barrel medic (Medicago truncatula Gaertn.) with the ipt-type control vectors pIPT5, pIPT10 and pIPT20 and distinct in vitro culture conditions. The highest GUS expression levels were obtained with the pIPT10 construct carrying the ipt gene under the control of the native ipt promoter and using kanamycin as selective agent. The ipt-shooty transformants, characterized by the absence of both rooting ability and apical dominance associated with vitrification, were easily identified by visual selection. Using only the ipt gene as selectable marker, we obtained a stable transformation frequency of 9.8% with pIPT10 construct. The ipt-type MAT vector pEXM2 was then used to monitor the excision events mediated by the yeast Recombinase and the consequent production of ipt marker-free transgenic plants. Transgenic ipt-shooty lines were recovered at a frequency of 7.9% in the absence of kanamycin-based selection. The ipt-shooty phenotype was maintained in all the transgenic lines and no reversion to the normal phenotype occurred. PCR analysis revealed the presence of the ‘hit and run’ cassette in the genome of all the regenerated ipt-shooty lines while RT-PCR experiments confirmed the expression of the R gene, encoding the yeast Recombinase. A detailed molecular investigation, carried out to verify the integrity of the RS sites, revealed that these regions were intact in most cases. Our results with barrel medic suggest that the MAT system must be carefully evaluated and discussed on a case by case basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ané J-M, Zhu H, Frugoli J (2008) Recent advances in Medicago truncatula genomics. Int J Plant Genomics. doi:10.1155/2008/256597nt

  • Araújo SS, Duque SRL, Santos DMMF, Fevereiro MPS (2004) An efficient transformation method to regenerate a high number of transgenic plants using a new embryogenic line of Medicago truncatula cv. Jemalong. Plant Cell Tissue Organ Cult 78:123–131

    Article  Google Scholar 

  • Ballester A, Cervera M, Pena L (2006) Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination. Plant Cell Rep. doi:10.1007/s00299-006-0197-3

  • Chabaud M, De Carvalho-Niebel F, Barker DG (2003) Efficient transformation of Medicago truncatula cv. Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1. Plant Cell Rep 22:46–51

    Article  PubMed  CAS  Google Scholar 

  • Cook DR (1999) Medicago truncatula—a model in the making! Curr Opin Plant Biol 2:301–304

    Article  PubMed  CAS  Google Scholar 

  • Crane C, Wright E, Dixon RA, Wang ZY (2006) Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens-transformed roots and Agrobacterium rhizogenes-transformed hairy roots. Planta 223:1344–1354

    Article  PubMed  CAS  Google Scholar 

  • Cui M, Takayanagi K, Kamada H, Nishimura S, Handa T (2000) Transformation of Antirrhinum majus L. by a rol-type multi-auto-transformation (MAT) vector system. Plant Sci 159:273–280

    Article  Google Scholar 

  • Cui M, Takayanagi K, Kamada H, Nishimura S, Handa T (2001) Efficient shoot regeneration from hairy roots of Antirrhinum majus L. transformed by the rol-type MAT vector system. Plant Cell Rep 20:55–59

    Article  CAS  Google Scholar 

  • Darbani B, Eimanifar A, Stewart CN, Camargo WN (2007) Methods to produce marker-free transgenic plants. Biotechnol J 2:83–90

    Article  PubMed  CAS  Google Scholar 

  • d’Erfurth I, Cosson V, Eschstruch A, Lucas H, Kondorosi A, Ratet P (2003) Efficient transposition of the Tnt1 tobacco retrotransposon in the model legume Medicago truncatula. Plant J 34:95–106

    Article  PubMed  CAS  Google Scholar 

  • Duque AS, Pires AS, Santos DMMF, Fevereiro MPS (2006) Efficient somatic embryogenesis and plant regeneration from long-term cell suspension cultures of Medicago truncatula cv. Jemalong. In Vitro Cell Dev Biol-Plant 3:270–273

    Google Scholar 

  • Ebinuma H, Komamine A (2001) MAT (Multi-Auto-Transformation) vector system. The oncogenes of Agrobacterium as positive markers for regeneration and selection of marker-free transgenic plants. In Vitro Cell Dev Biol-Plant 37:103–113

    Article  CAS  Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Yamakado M (1997) Selection of marker-free transgenic plants using the isopenthenyl transferase gene. Proc Natl Acad Sci USA 94:2117–2121

    Article  PubMed  CAS  Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Endo S, Yamada K, Komamine A (2001) Systems for the removal of a selection marker and their combination with a positive marker. Plant Cell Rep 20:383–392

    Article  CAS  Google Scholar 

  • Endo S, Kasahara T, Sugita K, Matsunaga E, Ebinuma H (2001) The isopentenyl transferase gene is effective as a selectable marker gene for plant transformation in tobacco (Nicotiana tabacum cv. Petite Havana SRI). Plant Cell Rep 20:60–66

    Article  CAS  Google Scholar 

  • Endo S, Sugita K, Sakai M, Tanaka H, Ebinuma H (2002) Single-step transformation for generating marker-free transgenic rice using the ipt-type MAT vector system. Plant J 30:115–122

    Article  PubMed  CAS  Google Scholar 

  • Fu D, St Amand PC, Xiao Y, Muthukrishnan S, Liang GH (2006) Characterization of T-DNA integration in creeping bentgrass. Plant Sci 170:225–237

    Article  CAS  Google Scholar 

  • Gilbertson L (2003) Cre-lox recombination: Cre-ative tools for plant biotechnology. Trends Biotechnol 21:550–555

    Article  PubMed  CAS  Google Scholar 

  • Hajdukiewicz PT, Gilberson L, Staub JM (2001) Multiple pathways for Cre/lox-mediated recombination in plastids. Plant J 27:161–170

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann B, Trinh TH, Leung J, Kondorosi A, Kondorosi E (1997) A new Medicago truncatula line with superior in vitro regeneration, transformation, and symbiotic properties isolated through cell culture selection. Mol Plant Microbe Interact 10:307–315

    Article  CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacteria helper plasmids for gene transfer to plants. Trans Res 2:208–218

    Article  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Kamaté K, Rodriguez-Llorente ID, Scholte M, Durand P, Ratet P, Kondorosi E, Kondorosi A (2000) Transformation of floral organs with GFP in Medicago truncatula. Plant Cell Rep 19:647–653

    Article  Google Scholar 

  • Khan RS, Chin DP, Nakamura I, Mii M (2006) Production of marker-free transgenic Nierembergia caerulea using MAT vector system. Plant Cell Rep. doi:10.1007/s00299-006-0125-6

  • Kohno-Murase J, Iwabuchi M, Endo-Kasahara S, Sugita K, Ebinuma H, Imamura J (2006) Production of trans-10, cis-12 conjugated linoleic acid in rice. Trans Res 15:95–100

    Article  CAS  Google Scholar 

  • Kondrak M, van der Meer IM, Banfalvi Z (2006) Generation of marker- and backbone-free transgenic potatoes by site-specific recombination and bi-functional marker gene in a non-regular one-border Agrobacterium transformation vector. Trans Res 15:729–737

    Article  CAS  Google Scholar 

  • Matsunaga E, Sugita K, Ebinuma H (2002) Asexual production of selectable-marker free transgenic woody plants, vegetatively propagated species. Mol Breed 10:95–106

    Article  CAS  Google Scholar 

  • Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193–232

    Article  PubMed  CAS  Google Scholar 

  • Neves LO, Duque SRL, Almeida JS, Fevereiro MPS (1999) Repetitive somatic embryogenesis in Medicago truncatula ssp. Narbonensis and M. truncatula Gaertn. cv. Jemalong. Plant Cell Rep 18:398–405

    Article  Google Scholar 

  • Nolan KE, Rose RJ (1998) Plant regeneration from cultured Medicago truncatula with particular reference to abscisic acid and light treatments. Aust J Bot 46:151–160

    Article  CAS  Google Scholar 

  • Nolan KE, Rose RJ, Gorst JR (1989) Regeneration of Medicago truncatula from tissue culture: increased somatic embryogenesis using explants from regenerated plants. Plant Cell Rep 8:278–281

    Article  Google Scholar 

  • Peng H, Huang H, Yang Y, Zhai Y, Wu J, Huang D, Lu T (2005) Functional analysis of GUS expression patterns and T-DNA integration characteristics in rice enhancer trap lines. Plant Sci 168:1571–1579

    Article  CAS  Google Scholar 

  • Rogers SO, Bendich AJ (1988) Extraction of DNA from plant tissues. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual, vol A6. Kluwer, Dordrecht, pp 1–10

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sugita K, Matsunaga E, Ebinuma H (1999) Effective selection system for generating marker free transgenic plants independent of sexual crossing. Plant Cell Rep 18:941–947

    Article  CAS  Google Scholar 

  • Sugita K, Matsunaga E, Kasahara T, Ebinuma M (2000) Transgene stacking in plants in the absence of sexual crossing. Mol Breed 6:529–536

    Article  CAS  Google Scholar 

  • Sugita K, Endo-Kasahara S, Tada Y, Lijun Y, Yasuda H, Hayashi Y, Jomori T, Ebinuma H, Takaiwa F (2005) Genetically modified rice seeds accumulating GLP-1 analogue stimulate insulin secretion from a mouse pancreatic beta-cell line. FEBS Lett 579:1085–1088

    Article  PubMed  CAS  Google Scholar 

  • Thyagarajan B, Giumaraes MJ, Groth AC, Calos MP (2000) Mammalian genomes contain active recombinase recognition sites. Gene 244:47–54

    Article  PubMed  CAS  Google Scholar 

  • Tinland B (1996) The integration of T-DNA into plant genomes. Trends Plant Sci 1:178–184

    Article  Google Scholar 

  • Trieu AT, Harrison MY (1996) Rapid transformation of Medicago truncatula: regeneration via shoot organogenesis. Plant Cell Rep 16:6–11

    Article  CAS  Google Scholar 

  • Trinh TH, Ratet P, Kondorosi E, Durand P, Kamaté K, Bauer P, Kondorosi A (1998) Rapid and efficient transformation of diploid Medicago truncatula and Medicago sativa ssp. falcata lines improved in somatic embryogenesis. Plant Cell Rep 17:345–355

    Article  CAS  Google Scholar 

  • Verwoerd TC, Dekker BMM, Hoekema A (1989) A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acid Res 17:2362

    Article  PubMed  CAS  Google Scholar 

  • Zelasco S, Ressegotti V, Confalonieri M, Carbonera D, Calligari P, Bonadei M, Bisoffi S, Yamada K, Balestrazzi A (2007) Evaluation of MAT-vector system in white poplar (Populus alba L.) and production of ipt marker-free transgenic plants by ‘single-step transformation’. Plant Cell Tissue Organ Cult 91:61–72

    Article  CAS  Google Scholar 

  • Zhuo X, Chandrasekharan MB, Hall TC (2004) High rooting frequency and functional analysis of GUS and GFP expression in transgenic Medicago truncatula A17. New Phytol 162:813–822

    Article  Google Scholar 

  • Zuo J, Niu QW, Ikeda Y, Chua NH (2002) Marker-free transformation: increasing transformation frequency by the use of regeneration-promoting genes. Curr Opin Biotechnol 13:173–180

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Antonio Ruscica and Massimo Sari for excellent technical assistance and for their participation during various stages of this work. We would like to thank Drs. Sergio Arcioni and Andrea Porceddu (IGV-CNR, Perugia, Italy) for providing R108-1 Medicago truncatula genotype and Dr. Pascal Ratet (ISV-CNRS, Gif sur Yvette, France) for helpful support during M. truncatula transformation stage. Authors are grateful to Dr. Keiko Yamada (Nippon Paper Industries, Tokyo, Japan) for providing MAT constructs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Confalonieri.

Additional information

Communicated by H. Ebinuma.

L. Scaramelli, A. Balestrazzi and M. Confalonieri have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scaramelli, L., Balestrazzi, A., Bonadei, M. et al. Production of transgenic barrel medic (Medicago truncatula Gaernt.) using the ipt-type MAT vector system and impairment of Recombinase-mediated excision events. Plant Cell Rep 28, 197–211 (2009). https://doi.org/10.1007/s00299-008-0634-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-008-0634-6

Keywords

Navigation