Skip to main content
Log in

Rapid transformation ofMedicago truncatula: regeneration via shoot organogenesis

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Summary

A rapid transformation and regeneration system has been developed forM. truncatula cv Jemalong (barrel medic) by which it is possible to obtain transgenic plants within 2.5 months. The procedure involvesAgrobacterium-mediated transformation of cotyledon explants coupled with the regeneration of transformed plants via direct organogenesis. To develop the procedure,M. truncatula explants were transformed with the binary plasmid pSLJ525 which carries thebar gene. Thebar gene encodes phosphinothricin acetyl transferase, and transformed plants were selected on media containing phosphinothricin (Ignite, AgrEvo). Transformed plants show phosphinothricin acetyl transferase activity and Southern blot analysis indicates that they carry thebar gene integrated into their genomes. The resistance to phosphinothricin is stable and is inherited by the R1 progeny as a single dominant Mendelian trait. The transgenic plants are highly resistant to the broad spectrum herbicide, Ignite and therefore may also have commercial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An G, Ebert PR, Mitra A, Ha SB (1988) Plant Mol. Biol. 3:1–19

    Google Scholar 

  • Barker DG, Bianchi S, Blondon F, Dattée Y, Duc G, Essad S, Flament P, Gallusci P, Génier G, Guy P, Muel X, Tourneur J, Dénarié J, Huguet T (1990) Plant Mol. Biol. Rep. 8:40–49

    Google Scholar 

  • Bénaben V, Duc G, Lefebvre V, Huguet T (1995) Plant Physiol. 107:53–62

    PubMed  Google Scholar 

  • Berlyn GP, Miksche JP (1976) Botanical Microtechnique and Cytochemistry (pp. 30–65). Iowa State University Press, Ames, Iowa

    Google Scholar 

  • Chabaud M, Larsonneau C, Marmouget C, Huguet T (1996) Plant Cell Rep. 15:305–310

    Google Scholar 

  • Church GM, Gilbert W (1984) Proc. Natl. Acad. Sci. USA 81:1991–1995

    PubMed  Google Scholar 

  • Cook D, Dreyer D, Bonnet D, Howell M, Nony E, Vanden-Bosch K (1995) Plant Cell 7:43–55

    PubMed  Google Scholar 

  • Crawford EJ, Lake AW, Boyce KG (1989) Adv. Agron. 42: 399–437

    Google Scholar 

  • De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gosselé V, Movva NR, Thompson C, Van Montagu M, Leemans J (1987) EMBO J. 6: 2513–2518

    Google Scholar 

  • de Jong J, Mertens MMJ, Rademaker W (1994) Plant Cell Rep. 14:59–64

    Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) Plant Mol. Biol. Rep. 4: 19–21

    Google Scholar 

  • Dröge-Laser W, Siemeling U, Pühler A, Broer I (1994) Plant Physiol. 105:159–166

    PubMed  Google Scholar 

  • Feinberg AP, Vogelstein B (1984) Anal. Biochem. 137: 266–267

    PubMed  Google Scholar 

  • Harrison MJ, Dixon RA (1994) Plant J. 6:9–20

    Google Scholar 

  • Harrison MJ, van Buuren ML (1995) Nature 378:626–629

    PubMed  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) Transgenic Res. 2:208–218

    Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton M-D (1986) J. Bacteriol. 168:1291–1301

    PubMed  Google Scholar 

  • Jones JDG, Shlumukov L, Carland F, English J, Scofield SR, Bishop GJ, Harrison K (1992) Transgenic Res. l: 285–297

    Google Scholar 

  • Kanyand M, Dessai AP, Prakash CS (1994) Plant Cell Rep 14: 15

    Google Scholar 

  • Kramer C, DiMaio J, Carswell GK, Shillito RD (1993) Planta 190:454–458

    Google Scholar 

  • Lamprecht SC, Knox-Davies PS (1984) Phytophylactica 16: 177–183

    Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) Bio/Technology 9:963–967

    PubMed  Google Scholar 

  • Mok MC, Mok DWS, Armstrong DJ, Shudo K, Isogai Y, Okamoto T (1982) Phytochem. 21:1509–1511

    Google Scholar 

  • Pichon M, Joumet E-P, Dedieu A, de Billy F, Truchet G, Barker DG (1992) Plant Cell 4:1199–1211

    PubMed  Google Scholar 

  • Sambrook J, Fritisch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schroeder HE, Schotz AH, Wardley-Richardson T, Spencer D, Higgins TJV (1993) Plant Physiol. 101:751–757

    PubMed  Google Scholar 

  • Szász A, Nervo G, Fári M (1995) Plant Cell Rep. 14:666–669

    Google Scholar 

  • Thomas MR, Rose RJ, Nolan KE (1992) Plant Cell Rep. 11:113–117

    Google Scholar 

  • Voisey CR, White DWR, Dudas B, Appleby RD, Ealing PM, Scott AG (1994) Plant Cell Rep. 13:309–314

    Google Scholar 

  • Wright MS, Koehler SM, Hinchee MA, Carnes MG (1986) Plant Cell Rep 5: 150–154

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Widholm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trieu, A.T., Harrison, M.J. Rapid transformation ofMedicago truncatula: regeneration via shoot organogenesis. Plant Cell Reports 16, 6–11 (1996). https://doi.org/10.1007/BF01275439

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01275439

Key words

Navigation