Skip to main content
Log in

High efficiency Agrobacterium-mediated transformation of Pinellia ternata using petiole explants from submerged cultures

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The lack of an efficient transformation system for Pinellia ternata is a major bottleneck in the functional annotation of genes and development of increased stress resistance of this medicinal herb. Here we describe the efficient transformation of P. ternata using petioles from submerged cultures as explants. We used the Agrobacterium strain EHA105, which harbored a pCAMBIA2300-35S-GUS-CaMVterm plasmid containing β-glucuronidase (GUS) as the reporter gene and nptII as the selectable marker. The recovery of transgenic plants was achieved by callus induction on the selection medium followed by shoot induction on the regeneration medium under selection pressure. Pre-culture of explants and ultrasonic treatment during inoculation enhanced the transformation efficiency. Transformation frequency reached 19% based on a GUS assay of independently derived, putative transgenic lines. This transformation system should facilitate the functional characterization of genes of interest and genetic advancements in P. ternata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BAP:

benzylaminopurine

GUS:

β-glucuronidase

IAA:

indole-3-acetic acid

KT:

6-furfurylamino-purine

MS:

Murashige and Skoog

NPTII:

neomycin phosphotransferase

RT-PCR:

reverse transcription PCR

YEP:

yeast extract and peptone

References

  • Du N. & Pijut P.M. 2009. Agrobacterium-mediated transformation of Fraxinus pennsylvanica hypocotyls and plant regeneration. Plant Cell Rep. 28: 915–923.

    Article  CAS  Google Scholar 

  • Duan Y., Zhai C., Li H., Li J., Mei W., Gui H., Ni D., Song F., Li L., Zhang W. & Yang J. 2012. An efficient and high-throughput protocol for Agrobacterium-mediated transformation based on phosphomannose isomerase positive selection in Japonica rice (Oryza sativa L.). Plant Cell Rep. 31: 1611–1624.

    Article  CAS  Google Scholar 

  • Duan Y.B., Lu H.D., Huang M.M., Zhao F.L., Teng J.T., Zhang A.M., Sheng W., Zhu Y.F. & Xue J.P. 2015. Cloning and in silico analysis of two genes, stearoyl-ACP desaturase (PtSAD) and small heat shock protein (PtsHSP), in response to heat stress of Pinellia ternata. Plant Omics J. 8: 316–321.

    CAS  Google Scholar 

  • Gelvin S.B. 2010. Plant proteins involved in Agrobacterium-mediated transformation. Annu. Rev. Phytopathol. 48: 45–68.

    Article  CAS  Google Scholar 

  • Gong Y.Y., Feng Y.K., Guo S.Q., Shu H.M., Ni W.C. & Liu L.H. 2013. Construction and verification of a plant expression vector pCAMBIA2300-35S-GUS-CaMVterm. China Biotech. 33: 86–91.

    CAS  Google Scholar 

  • Han M.H., Yang X.W., Zhang M. & Zhong G.Y. 2006. Phytochemical study of the rhizome of Pinellia ternata and quantification of phenylpropanoids in commercial Pinellia tuber by RP-LC. Chromatographia 64: 647–653.

    Article  CAS  Google Scholar 

  • Jefferson R.A., Kavanagh T.A. & Bevan M.W. 1987. GUS fusions: β glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907.

    Article  CAS  Google Scholar 

  • Ji X., Huang B.K., Wang G.W. & Zhang C.Y. 2014. The ethnob-otanical, phytochemical and pharmacological profile of the genus Pinellia. Fitoterapia 93: 1–17.

    Article  CAS  Google Scholar 

  • Jin B., Jiang F.S., Yu M.R., Chen N.P. & Ding Z.S. 2009. Agrobacterium tumefaciens mediated chitinase and β-1,3-glucanase gene transformation for Pinellia ternata. China J. Chin. Mater. Med. 34: 1765–1767.

    CAS  Google Scholar 

  • Kim Y.J., Shin Y.O., Ha Y.W., Lee S., Oh J.K. & Kim Y.S. 2006. Anti-obesity effect of Pinellia ternata extract in Zucker rats. Biol. Pharm. Bull. 29: 1278–1281.

    Article  CAS  Google Scholar 

  • Koetle M.J., Finnie J.F., Balázs E. & Van Staden J. 2015. A review on factors affecting the Agrobacterium-mediated genetic transformation in ornamental monocotyledonous geophytes. S. Afr. J. Bot. 98: 37–44.

    Article  CAS  Google Scholar 

  • Lacroix B., Zaltsman A. & Citovsky V. 2011. Host factors involved in genetic transformation of cells by Agrobacterium, pp. 3–29. In: Stewart C.N., Toiraev A., Citovsky V. & Tzfira T. (eds), Plant Transformation Technologies, Blackwell Publishing, West Sussex.

    Google Scholar 

  • Ling L.J., Yang Y.Z. & Bi Y.R. 2010. Expression and characterization of two domains of Pinellia ternata agglutinin (PTA), a plant agglutinin from Pinellia ternata with antifungal activity. World J. Microbiol. Biotechnol. 26: 545–554.

    Article  CAS  Google Scholar 

  • Liu Y.H., Liang Z.S. & Liu J.L. 2010. Use of protocorm-like bodies for studying alkaloid metabolism in Pinellia ternata. Plant Cell Tiss. Organ Cult. 100: 83–89.

    Article  CAS  Google Scholar 

  • Lu H.D., Xue T., Zhang A.M., Sheng W., Zhu Y.F., Chang L., Song Y.X. & Xue J.P. 2013. Construction of an SSH library of Pinellia ternata under heat stress, and expression analysis of four transcripts. Plant Mol. Biol. Rep. 31: 185–194.

    Article  CAS  Google Scholar 

  • Luo L., Wang J.N., Kong L.D., Jiang Q.G. & Tan R.X. 2000. Antidepressant effects of banxia houpu decoction, a traditional Chinese medicinal empirical formula. J. Ethnopharmacol. 73: 277–281.

    Article  CAS  Google Scholar 

  • Maschke R.W., Geipel K. & Bley T. 2015. Modeling of plant in vitro cultures: overview and estimation of biotechnological processes. Biotechnol. Bioeng. 112: 1–12.

    Article  CAS  Google Scholar 

  • Palla K.J. & Pijut P.M. 2015. Agrobacterium-mediated genetic transformation of Fraxinus americana hypocotyls. Plant Cell Tiss. Organ Cult. 120: 631–641.

    Article  CAS  Google Scholar 

  • Prakash M.G. & Gurumurthi K. 2009. Genetic transformation and regeneration of transgenic plants from precultured cotyledon and hypocotyl explants of Eucalyptus tereticornis Sm. using Agrobacterium tumefaciens. In Vitro Cell Dev. Biol. Plant 45: 429–434.

    Article  CAS  Google Scholar 

  • Wang X.S., Wu Y.F., Ma J.Y. & Shi Q.L. 2008. Study on chemical components and pharmacological activities of Pinellia ternata. Qilu Pharmaceutical Affairs 27: 101–103.

    Google Scholar 

  • Wang X.Y., Wen X.P. & Hu P. 2009. Transgenic Pinelia ternata (Thunb.) Breit plants containing ipt obtained by Agrobacterium-mediated transformation. J. Huazhong Agric. Univ. 28: 664–668.

    Google Scholar 

  • Wu L., Xue J.P., Xu Y.M. & Tian Z.D. 2008. Comparison of four methods and their efficiency for total RNA extraction from leaves of Pinellia ternata. China J. Chin. Mater. Med. 39: 901–905.

    CAS  Google Scholar 

  • Xu T., Zhang L., Sun X. & Tang K. 2005. Efficient in vitro plant regeneration of Pinellia ternata (Thunb) Breit. Acta Biol. Cracov. Bot. 47: 27–32.

    Google Scholar 

  • Xue J.P., Ding Y., Zhang A.M. & Hu C.Q. 2004a. The change of activity of protective enzyme around sprout tumble of Pinellia ternata under high temperature stress. China J. Chin. Mater. Med. 29: 641–643.

    CAS  Google Scholar 

  • Xue J.P., Zhu Y.F., Zhang A.M. & Liu J. 2004b. Research on direct formation of microtubers from Pinellia ternata. Acta Agronomica Sinica 30: 1060–1064.

    CAS  Google Scholar 

  • Ying F.X., Hu X.F. & Chen J.S. 2007. First report of soft rot caused by Pectobacterium carotovorum on Pinellia ternata in China. Plant Dis. 91: 1359.

    Article  CAS  Google Scholar 

  • Zhang J. & Tan X.H. 2010. Research progress on Pinellia ternata resources. Chinese Journal of Information on Traditional Chinese Medicine 7: 104–106.

    Google Scholar 

  • Zhang M., Zhong G.Y., Ma K.S. & Ding J.C. 2004. Experimental investigation on sprout tumble in Pinellia ternata. China J. Chin. Mater. Med. 29: 273–274.

    Google Scholar 

  • Zhang Z.H., Li W.J., Lin R.C., Dai Z. & Li X.F. 2013. Isolation and structure elucidation of alkaloids from Penellia ternata. Heterocycles 87: 637–643.

    Article  Google Scholar 

  • Zhou W., Gao Y., Xu S., Yang Z. & Xu T. 2014. Purification of a mannose-binding lectin Pinellia ternata agglutinin and its induction of apoptosis in Bel-7404 cells. Protein Expr. Purif. 93: 11–17.

    Article  CAS  Google Scholar 

  • Zhou W., Huang Y., Xu S., Gao Y., Chen W., Dong M., Yang Z. & Xu T. 2013. Prokaryotic expression and bioactivity analysis of N-terminus domain of Pinellia ternata agglutinin using alkaline phosphatase signal peptide. Protein Expr. Purif. 89: 84–91.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongbo Duan or Jianping Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Zhao, F., Li, Q. et al. High efficiency Agrobacterium-mediated transformation of Pinellia ternata using petiole explants from submerged cultures. Biologia 70, 1351–1358 (2015). https://doi.org/10.1515/biolog-2015-0159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0159

Key words

Navigation