Skip to main content

Advertisement

Log in

Mechanisms of fatty acid synthesis in marine fungus-like protists

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Thraustochytrids are unicellular fungus-like protists and are well known for their ability to produce interesting nutraceutical compounds. Significant efforts have been made to improve their efficient production of important fatty acids (FAs), mostly by optimizing fermentation conditions and selecting highly productive thraustochytrid strains. Furthermore, noticeable improvements have been made in understanding the mechanism of FA biosynthesis, allowing for a better understanding of how thraustochytrids assemble these unique metabolites and how their biosynthesis is coupled with other related pathways. This review summarizes recent achievements on two major FA biosynthesis pathways, the standard pathway and the polyketide synthase pathway, and detail features of individual enzymes involved in FA biosynthesis, biotechnological advances in pathway engineering and enzyme characterization, and the discovery of other pathways that affect the efficiency of FA accumulation. Perspectives of biotechnological potential application of thraustochytrids are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe E, Ikeda K, Nutahara E, Hayashi M, Yamashita A, Taguchi R, Doi K, Honda D, Okino N, Ito M (2014) Novel lysophospholipid acyltransferase PLAT1 of Aurantiochytrium limacinum F26-b responsible for generation of palmitate-docosahexaenoate- phosphatidylcholine and phosphatidylethanolamine. PLoS One 9:e102377

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Anbu P, Kim DU, Jeh EJ, Jeong YS, Hur BK (2007) Investigation of the physiological properties and synthesis of PUFAs from thraustochytrids and its electrophoretic karyotypes. Biotechnol Bioproc E 12:720–729

    Article  CAS  Google Scholar 

  • Bongiorni L, Dini F (2002) Distribution and abundance of thraustochytrids in different Mediterranean coastal habitats. Aqua Micro Ecol 30:49–56

    Article  Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret JP, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kroger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-Jezequel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Oudot-Le Secq MP, Napoli C, Obornik M, Parker MS, Petit JL, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van De Peer Y, Grigoriev IV (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    Article  CAS  PubMed  Google Scholar 

  • Brembu T, Jorstad M, Winge P, Valle KC, Bones AM (2011) Genome-wide profiling of responses to cadmium in the diatom Phaeodactylum tricornutum. Environ Sci Technol 45:7640–7647

    Article  CAS  PubMed  Google Scholar 

  • Cakmak T, Angun P, Demiray YE, Ozkan AD, Elibol Z, Tekinay T (2012) Differential effects of nitrogen and sulfur deprivation growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnol Bioeng 109:1947–1957

    Article  CAS  PubMed  Google Scholar 

  • Chaisawang M, Verduyn C, Chauvatcharin S, Suphantharika M (2012) Metabolic networks and bioenergetics of Aurantiochytrium sp. B-072 during storage lipid formation. Braz J Microbiol 43:1192–1205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang GF, Gao NS, Tian GW, Wu QH, Chang M, Wang XG (2013a) Improvement of docosahexaenoic acid production on glycerol by Schizochytrium sp. S31 with constantly high oxygen transfer coefficient. Bioresource Technol 142:400–406

    Article  CAS  Google Scholar 

  • Chang GF, Luo ZL, Gu ST, Wu QH, Chang M, Wang XG (2013b) Fatty acid shifts and metabolic activity changes of Schizochytrium sp. S31 cultured on glycerol. Bioresource Technol 142:255–260

    Article  CAS  Google Scholar 

  • Chang KJL, Dumsday G, Nichols PD, Dunstan GA, Blackburn SI, Koutoulis A (2013c) High cell density cultivation of a novel Aurantiochytrium sp. strain TC 20 in a fed-batch system using glycerol to produce feedstock for biodiesel and omega-3 oils. Appl Microbiol Biot 97:6907–6918

    Article  CAS  Google Scholar 

  • Chen F, Johns MR (1991) Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J Appl Phycol 3:203–209

    Article  CAS  Google Scholar 

  • Chen G, Fan KW, Lu FP, Li Q, Aki T, Chen F, Jiang Y (2010) Optimization of nitrogen source for enhanced production of squalene from thraustochytrid Aurantiochytrium sp. New Biotechnol 27:382–389

    Article  CAS  Google Scholar 

  • Cheng R, Ge Y, Yang B, Zhong XM, Lin XZ, Huang Z (2013) Cloning and functional analysis of putative malonyl-CoA: acyl carrier protein transacylase gene from the docosahexaenoic acid-producer Schizochytrium sp. TIO1101. World J Microbiol Biot 29:959–967

    Article  CAS  Google Scholar 

  • Christie WW (2011) Fatty acids: natural alicyclic structures, occurrence, and biochemistry. The AOCS lipid library

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381

    Article  CAS  PubMed  Google Scholar 

  • De Martino A, Bartual A, Willis A, Meichenin A, Villazan B, Maheswari U, Bowler C (2011) Physiological and molecular evidence that environmental changes elicit morphological interconversion in the model diatom Phaeodactylum tricornutum. Protist 162:462–481

    Article  PubMed  Google Scholar 

  • Dean AP, Nicholson JM, Sigee DC (2008) Impact of phosphorus quota and growth phase on carbon allocation in Chlamydomonas reinhardtii: an FTIR microspectroscopy study. Eur J Phycol 43:345–354

    Article  CAS  Google Scholar 

  • Dijkstra A, Hamilton R, Wolf H (2008) Fatty acid biosynthesis. Trans fatty acids. Blackwell Pub, Oxford

    Book  Google Scholar 

  • Diwan JJ (2011) Fatty acid synthesis. Rensselaer polytechnic institute (RPI): architecture, business, engineering, IT, humanities, science

  • Evans CT, Scragg AH, Ratledge C (1983) A comparative study of citrate efflux from mitochondria of oleaginous and non-oleaginous yeasts. Eur J Biochem 130:195–204

    Article  CAS  PubMed  Google Scholar 

  • Fabris M, Matthijs M, Rombauts S, Vyverman W, Goossens A, Baart GJ (2012) The metabolic blueprint of Phaeodactylum tricornutum reveals a eukaryotic Entner-Doudoroff glycolytic pathway. Plant J 70:1004–1014

    Article  CAS  PubMed  Google Scholar 

  • Fan KW, Chen F, Jones EB, Vrijmoed LL (2001) Eicosapentaenoic and docosahexaenoic acids production by and okara-utilizing potential of thraustochytrids. J Industr Microbiol Biotechnol 27:199–202

    Article  CAS  Google Scholar 

  • Fan KW, Aki T, Chen F, Jiang Y (2010) Enhanced production of squalene in the thraustochytrid Aurantiochytrium mangrovei by medium optimization and treatment with terbinafine. World J Microbiol Biot 26:1303–1309

    Article  CAS  Google Scholar 

  • Fiaux J, Çakar ZP, Sonderegger M, Wüthrich KW, Szyperski T, Sauer U (2003) Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryot Cell 2:170–180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fidalgo JP, Cid A, Torres E, Sukenik A, Herrero C (1998) Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture 166:105–116

    Article  CAS  Google Scholar 

  • Furlan VM, Paulo M, Batista I, Bandarra NM, Santo MLE, Prentice C (2012) Effect of the concentration of glucose in the docosahexaenoic acid (DOCOSAHEXAENOIC ACID) production by Thraustochytrium sp., ATCC, 26185. Adv J Food Sci Technol 4:257–264

    Google Scholar 

  • Gardner RD, Cooksey KE, Mus F, Macur R, Moll K, Eustance E, Carlson RP, Gerlach R, Fields MW, Peyton BM (2012) Use of sodium bicarbonate to stimulate triacylglycerol accumulation in the chlorophyte Scenedesmus sp. and the diatom Phaeodactylum tricornutum. J Appl Phycol 24:1311–1320

    Article  CAS  Google Scholar 

  • Gong Y, Zhang J, Guo X, Wan X, Liang Z, Hu CJ, Jiang M (2013) Identification and characterization of PtDGAT2B, an acyltransferase of the DGAT2 acyl-coenzyme A: diacylglycerol acyltransferase family in the diatom Phaeodactylum tricornutum. FEBS Lett 587:481–487

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Barrow CJ, Puri M (2012) Omega-3 biotechnology: thraustochytrids as a novel source of omega-3 oils. Biotechnol Adv 30:1733–1745

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Singh D, Barrow CJ, Puri M (2013) Exploring potential use of Australian thraustochytrids for the bioconversion of glycerol to omega-3 and carotenoids production. Biochem Eng J 78:11–17

    Article  CAS  Google Scholar 

  • Hamid AA, Mokhtar NF, Taha EM, Omar O, Yusoff WMW (2010) The role of ATP citrate lyase, malic enzyme and fatty acid synthase in the regulation of lipid accumulation in Cunninghamella sp. 2A1. Ann Microbiol 61:463–468

    Article  CAS  Google Scholar 

  • Hauvermale A, Kuner J, Rosenzweig B, Guerra D, Diltz S, Metz JG (2006) Fatty acid production in Schizochytrium sp.: involvement of a polyunsaturated fatty acid synthase and a type I fatty acid synthase. Lipids 41:739–747

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann M, Wagner M, Abbadi A, Fulda M, Feussner I (2008) Metabolic engineering of omega 3-very long chain polyunsaturated fatty acid production by an exclusively acyl-CoA-dependent pathway. J Biol Chem 283:22352–22362

    Article  CAS  PubMed  Google Scholar 

  • Holdsworth JE, Veenhuis M, Ratledge C (1988) Enzyme activities in oleaginous yeast accumulating and utilizing exogenous or endogenous lipids. J Gen Microbiol 134:2907–2915

    CAS  PubMed  Google Scholar 

  • Hong WK, Kim CH, Rairakhwada D, Kim S, Hur BK, Kondo A, Seo JW (2012) Growth of the oleaginous microalga Aurantiochytrium sp. KRS101 on cellulosic biomass and the production of lipids containing high levels of docosahexaenoic acid. Bioproc Biosyst Eng 35:129–133

    Article  CAS  Google Scholar 

  • Hong WK, Heo SY, Oh BR, Kim CH, Sohn JH, Yang JW, Kondo A, Seo JW (2013a) A transgene expression system for the marine microalgae Aurantiochytrium sp. KRS101 using a mutant allele of the gene encoding ribosomal protein L44 as a selectable transformation marker for cycloheximide resistance. Bioproc Biosyst Eng 36:1191–1197

    Article  CAS  Google Scholar 

  • Hong WK, Heo SY, Park HM, Kim CH, Sohn JH, Kondo A, Seo JW (2013b) Characterization of a squalene synthase from the thraustochytrid microalga Aurantiochytrium sp. KRS101. Appl Microbiol Biot 23:759–765

    CAS  Google Scholar 

  • Huang JZ, Jiang XZ, Zhang XW, Chen WH, Tian BY, Shu ZY, Hu SN (2008) Expressed sequence tag analysis of marine fungus Schizochytrium producing docosahexaenoic acid. Biotechnology 138:9–16

    CAS  Google Scholar 

  • Huang JZ, Jiang XZ, Xia XF, Yu AQ, Mao RY, Chen XF, Tian BY (2011) Cloning and functional identification of delta5 fatty acid desaturase gene and its 5′-upstream region from marine fungus Thraustochytrium sp. FJN-10. Mar Biotechnol 13:12–21

    Article  CAS  PubMed  Google Scholar 

  • Huang TY, Lu WC, Chu IM (2012) A fermentation strategy for producing docosahexaenoic acid in Aurantiochytrium limacinum SR21 and increasing C22: 6 proportions in total fatty acid. Bioresource Technol 123:8–14

    Article  CAS  Google Scholar 

  • Jakobsen AN, Aasen IM, Josefsen KD, Strøm AR (2008) Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp. strain T66: effects of N and P starvation and O2 limitation. Appl Microbiol Biot 80:297–306

    Article  CAS  Google Scholar 

  • Jenkins KM, Jensen PR, Fenical W (1999) Thraustochytrosides A-C: new glycosphingolipids from a unique marine protist, Thraustochytrium globosum. Tetrahedron Lett 40:7637–7640

    Article  CAS  Google Scholar 

  • Kamisaka Y, Kimura K, Uemura H, Shibakami M (2010) Activation of diacylglycerol acyltransferase expressed in Saccharomyces cerevisiae: overexpression of Dga1p lacking the N-terminal region in the Delta snf2 disruptant produces a significant increase in its enzyme activity. Appl Microbiol Biot 88:105–115

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucl Acids Res 40:D109–D114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kang DH, Anbu P, Kim WH, Hur BK (2008) Coexpression of Elo-like enzyme and Δ5, Δ4-desaturases derived from Thraustochytrium aureum ATCC 34304 and the production of DHA and DPA in Pichia pastoris. Biotechnol Bioproc E 13:483–490

    Article  CAS  Google Scholar 

  • Kang DH, Anbu P, Jeong YS, Chaulagain BP, Seo JW, Hur BK (2010) Identification and characterization of a novel enzyme related to the synthesis of PUFAs derived from Thraustochytrium aureum ATCC 34304. Biotechnol Bioproc E 15:261–272

    Article  CAS  Google Scholar 

  • Kim K, Kim EJ, Ryu BG, Park S, Choi YE, Yang JW (2013) A novel fed-batch process based on the biology of Aurantiochytrium sp. KRS101 for the production of biodiesel and docosahexaenoic acid. Bioresource Technol 135:269–274

    Article  CAS  Google Scholar 

  • Kumon Y, Kamisaka Y, Tomita N, Kimura K, Uemura H, Yokochi T, Yokoyama R, Honda D (2008) Isolation and characterization of a Delta 5-desaturase from Oblongichytrium sp. Biosci Biotech Biochem 72:2224–2227

    Article  CAS  Google Scholar 

  • Lali SC, Yokochi T, Nakahara T (2001) Conversion of 18-carbon fatty acids to long chain polyunsaturated fatty acids in some thraustochytrids. J Oleo Sci 50:515–520

    Article  CAS  Google Scholar 

  • Leander CA, Porter D (2001) The Labyrinthulomycota is comprised of three distinct lineages. Mycologia 93:459–464

    Article  Google Scholar 

  • Leander CA, Porter D, Leander BS (2004) Comparative morphology and molecular phylogeny of aplanochytrids (Labyrinthulomycota). Eur J Protistol 40:317–328

    Article  Google Scholar 

  • Lewis TE, Nichols PD, McMeekin TA (1999) The biotechnological potential of thraustochytrids. Mar Biotechnol 1:580–587

    Article  CAS  PubMed  Google Scholar 

  • Lewis TE, Nichols PD, McMeekin TA (2001) Sterol and squalene content of a docosahexaenoic-acid-producing thraustochytrid: influence of culture age, temperature, and dissolved oxygen. Mar Biotechnol 3:439–447

    Article  CAS  PubMed  Google Scholar 

  • Li YT, Li MT, Fu CH, Zhou PP, Liu JM, Yu LJ (2009) Improvement of arachidonic acid and eicosapentaenoic acid production by increasing the copy number of the genes encoding fatty acid desaturase and elongase into Pichia pastoris. Biotechnol Lett 31:1011–1017

    Article  CAS  PubMed  Google Scholar 

  • Li J, Ren LJ, Sun GN, Qu L, Huang H (2013) Comparative metabolomics analysis of docosahexaenoic acid fermentation processes by Schizochytrium sp. under different oxygen availability conditions. OMICS 17:269–281

    Article  CAS  PubMed  Google Scholar 

  • Lian M, Huang H, Ren LJ, Ji XJ, Zhu JY, Jin LJ (2010) Increase of docosahexaenoic acid production by Schizochytrium sp. through mutagenesis and enzyme assay. Appl Microbiol Biot 162:935–941

    CAS  Google Scholar 

  • Liang Y, Sarkany N, Cui Y, Yesuf J, Trushenski J, Blackburn JW (2010) Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. Bioresource Technol 101:3623–3627

    Article  CAS  Google Scholar 

  • Lippmeier CJ, Crawford KS, Owen CB, Rivas AA, Metz JG, Apt KE (2009) Characterization of both polyunsaturated fatty acid biosynthetic pathways in Schizochytrium sp. Lipids 44:621–630

    Article  CAS  PubMed  Google Scholar 

  • Makri A, Fakas S, Aggelis G (2010) Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresource Technol 101:2351–2358

    Article  CAS  Google Scholar 

  • Matsuda T, Sakaguchi K, Kobayashi T, Abe E, Kurano N, Sato A, Okita Y, Sugimoto S, Hama Y, Hayashi M, Okino N, Ito M (2011) Molecular cloning of a Pinguiochrysis pyriformis oleate-specific microsomal Delta12-fatty acid desaturase and functional analysis in yeasts and thraustochytrids. Biochemistry 150:375–383

    Article  CAS  Google Scholar 

  • Matsuda T, Sakaguchi K, Hamaguchi R, Kobayashi T, Abe E, Hama Y, Hayashi M, Honda D, Okita Y, Sugimoto S, Okino N, Ito M (2012) Analysis of delta-12-fatty acid desaturase function revealed that two distinct pathways are active for the synthesis of PUFAs in Thraustochytrium aureum ATCC 34304. Lipid Res 53:1210–1222

    Article  CAS  Google Scholar 

  • Metz JG, Roessler P, Facciotti D, Levering C, Dittrich F, Lassner M, Valentine R, Lardizabal K, Domergue F, Yamada A, Yazawa K, Knauf V, Browse J (2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290–293

    Article  CAS  PubMed  Google Scholar 

  • Metz JG, Kuner J, Rosenzweig B, Lippmeier JC, Roessler P, Zirkle R (2009) Biochemical characterization of polyunsaturated fatty acid synthesis in Schizochytrium: release of the products as free fatty acids. Plant Physiol Biochem 47:472–478

    Article  CAS  PubMed  Google Scholar 

  • Min KH, Lee HH, Anbu P, Chaulagain BP, Hur BK (2012) The effects of culture condition on the growth property and docosahexaenoic acid production from Thraustochytrium aureum ATCC 34304. Korean J Chem Eng 29:1211–1215

    Article  CAS  Google Scholar 

  • Mühlroth A, Li K, Røkke G, Winge P, Olsen Y, Hohmann-Marriott MF, Vadstein O, Bones AM (2013) Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Mar Drugs 11:4662–4697

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mus F, Toussaint JP, Cooksey KE, Fields MW, Gerlach R, Peyton BM, Carlson RP (2013) Physiological and molecular analysis of carbon source supplementation and pH stress-induced lipid accumulation in the marine diatom Phaeodactylum tricornutum. Appl Microbiol Biotechnol 97:3625–3642

    Article  CAS  PubMed  Google Scholar 

  • Nagano N, Taoka Y, Honda D, Hayashi M (2009) Optimization of culture conditions for growth and docosahexaenoic acid production by a marine thraustochytrid, Aurantiochytrium limacinum mh0186. J Oleo Sci 58:623–628

    Article  CAS  PubMed  Google Scholar 

  • Nagano N, Sakaguchi K, Taoka Y, Okita Y, Honda D, Ito M, Hayashi M (2011) Detection of genes involved in fatty acid elongation and desaturation in thraustochytrid marine eukaryotes. J Oleo Sci 60:475–481

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa A, Matsuura H, Kose R, Ito K, Ueda M, Honda D, Kunimitsu K, Watanabe MM (2012a) Optimization of biomass and fatty acid production by Aurantiochytrium sp. strain 4W-1b. Procedia Environ Sci 15:27–33

    Article  CAS  Google Scholar 

  • Nakazawa A, Matsuura H, Kose R, Kato S, Honda D, Inouye I, Kunimitsu K, Watanabe MM (2012b) Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production. Bioresource Technol 109:287–291

    Article  CAS  Google Scholar 

  • Ohara J, Sakaguchi K, Okita Y, Okino N, Ito M (2013) Two fatty acid elongases possessing C18-Δ6/C18-Δ9/C20-Δ5 or C16-Δ9 elongase activity in Thraustochytrium sp. ATCC 26185. Mar Biotechnol 15:476–486

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou S, Aggelis G (2011) Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur J Lipid Sci Technol 113:1031–1051

    Article  CAS  Google Scholar 

  • Peng KT, Zheng CN, Xue J, Chen XY, Yang WD, Liu JS, Bai WB, Li HY (2014) Delta 5 fatty acid desaturase upregulates the synthesis of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum. J Agric Food Chem 62:8773–8776

    Article  CAS  PubMed  Google Scholar 

  • Piorreck M, Baasch KH, Pohl P (1984) Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 23:207–216

    Article  CAS  Google Scholar 

  • Prabu R (2012) Effect of sodium sulphate salinity for production of docosahexaenoic acid (docosahexaenoic acid) by Thraustochytrids aureum RAK-21. Asian biomed (Research Reviews and News) 6

  • Qiu X, Hong H, MacKenzie SL (2001) Identification of a Delta 4 fatty acid desaturase from Thraustochytrium sp. involved in the biosynthesis of docosahexanoic acid by heterologous expression in Saccharomyces cerevisiae and Brassica juncea. Biol Chem 276:31561–31566

    Article  CAS  Google Scholar 

  • Qu L, Ji XJ, Ren LJ, Nie ZK, Feng Y, Wu WJ, Ouyang PK, Huang H (2010) Enhancement of docosahexaenoic acid production by Schizochytrium sp. using a two-stage oxygen supply control strategy based on oxygen transfer coefficient. Lett Appl Microbiol 52:22–27

    Article  PubMed  CAS  Google Scholar 

  • Quilodrán B, Hinzpeter I, Quiroz A, Shene C (2009) Evaluation of liquid residues from beer and potato processing for the production of docosahexaenoic acid (C22:6n-3, DHA) by native thraustochytrid strains. World J Microbiol Biot 25:2121–2128

    Article  CAS  Google Scholar 

  • Radakovits R, Eduafo PM, Posewitz MC (2011) Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metab Eng 13:89–95

    Article  CAS  PubMed  Google Scholar 

  • Raghukumar S (2002) Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). Eur J Protistol 38:127–145

    Article  Google Scholar 

  • Raghukumar S (2008) Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Mar Biotechnol 10:631–640

    Article  CAS  PubMed  Google Scholar 

  • Raghukumar S, Damare VS (2011) Increasing evidence for the important role of Labyrinthulomycetes in marine ecosystems. Bot Mar 54:3–11

    Article  Google Scholar 

  • Raghukumar S, Gaertner A (1980) Ecology of the thraustochytrids (lower marine fungi) in the Fladen ground and other parts of the North Sea II. Veröff Inst Meeresforsch Bremerh 18:289–308

    Google Scholar 

  • Raghukumar S, Schaumann K (1993) An epifluorescence microscopy method for direct detection and enumeration of the fungi like marine protists, the thraustochytrids. Limnol Oceanogra 38:182–187

    Article  Google Scholar 

  • Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815

    Article  CAS  PubMed  Google Scholar 

  • Ren LJ, Ji XJ, Huang H, Qu L, Feng Y, Tong QQ, Ouyang PK (2010) Development of a stepwise aeration control strategy for efficient docosahexaenoic acid production by Schizochytrium sp. Appl Microbiol Biot 87:1649–1656

    Article  CAS  Google Scholar 

  • Sakaguchi K, Matsuda T, Kobayashi T, Ohara JI, Hamaguchi R, Abe E, Nagano N, Hayashi M, Ueda M, Honda D, Okita Y, Taoka Y, Sugimoto S, Okino N, Ito M (2012) Versatile transformation system that is applicable to both multiple transgene expression and gene targeting for Thraustochytrids. Appl Environ Microbiol 78:3193–3202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santangelo G, Bongiorni L, Pignataro L (2000) Abundance of thraustochytrids and ciliated protozoans in a Mediterranean sandy shore determined by an improved, direct method. Aqua Microbiol Ecol 23:55–61

    Article  Google Scholar 

  • Scott SD, Armenta RE, Berryman KT, Norman AW (2011) Use of raw glycerol to produce oil rich in polyunsaturated fatty acids by a thraustochytrid. Enzyme Microbiol Technol 48:267–272

    Article  CAS  Google Scholar 

  • Shene C, Leyton A, Esparza Y, Flores L, Quilodrán B, Hinzpeter I, Rubilar M (2010) Microbial oils and fatty acids: effect of carbon source on docosahexaenoic acid (C22:6 N-3, DHA) production by thraustochytrid strains. J Soil Sci Plant Nutr 10:207–216

    Article  Google Scholar 

  • Singh P, Liu Y, Li L, Wang GY (2014) Ecological dynamics and biotechnological implications of thraustochytrids from marine habitats. Appl Microbiol Biot 98:5789–5805

    Article  CAS  Google Scholar 

  • Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol 20:245–251

    Article  CAS  Google Scholar 

  • Song X, Tan Y, Liu Y (2013) Different impacts of short-chain fatty acids on saturated and polyunsaturated fatty acid biosynthesis in Aurantiochytrium sp. SD116. J Agric Food Chem 61:9876–9881

    Article  CAS  PubMed  Google Scholar 

  • Sparrow FK (1936) Biological observations on the marine fungi of Woods Hole waters. Biol Bull 70:236–263

    Article  Google Scholar 

  • Suen YL, Tang H, Huang J, Chen F (2014) Enhanced production of fatty acids and astaxanthin in Aurantiochytrium sp. by the expression of Vitreoscilla hemoglobin. J Agric Food Chem 62:12392–12398

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Ren LJ, Zhuang XY, Ji XJ, Yan JC, Huang H (2014) Differential effects of nutrient limitations on biochemical constituents and docosahexaenoic acid production of Schizochytrium sp. Bioresource Technol 159:199–206

    Article  CAS  Google Scholar 

  • Taha AIBHM, Kimoto T, Kanada T, Okuyama H (2013) Growth optimization of Thraustochytrid strain 12B for the commercial production of docosahexaenoic acid. Food Sci Biotechnol 22:53–58

    Article  CAS  Google Scholar 

  • Taoka Y, Nagano N, Okita Y, Izumida H, Sugimoto S, Hayashi M (2011) Effect of Tween 80 on the growth, lipid accumulation and fatty acid composition of Thraustochytrium aureum ATCC 34304. J Biosci Bioeng 111:420–424

    Article  CAS  PubMed  Google Scholar 

  • Unagul P, Assantachai C, Phadungruengluij S, Suphantharika M, Verduyn C (2005) Properties of the docosahexaenoic acid-producer Schizochytrium mangrovei Sk-02: effects of glucose, temperature and salinity and their interaction. Bot Mar 48:387–394

    Article  CAS  Google Scholar 

  • Valenzuela J, Mazurie A, Carlson RP, Gerlach R, Cooksey KE, Peyton BM, Fields MW (2012) Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum. Biotechnol Biofuels 5:40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wynn JP, Hamid AA, Ratledge C (1999) The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiology 145:1911–1917

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki T, Aki T, Shinozaki M, Taguchi M, Kawamoto S, Ono K (2006) Utilization of Shochu distillery wastewater for production of polyunsaturated fatty acids and xanthophylls using thraustochytrid. J Biosci Bioeng 102:323–327

    Article  CAS  PubMed  Google Scholar 

  • Yan JF, Cheng RB, Lin XZ, You S, Li K, Rong H, Ma Y (2013) Overexpression of acetyl-CoA synthetase increased the biomass and fatty acid proportion in microalga Schizochytrium. Appl Microbiol Biot 97:1933–1939

    Article  CAS  Google Scholar 

  • Yongmanitchai W, Ward OP (1991) Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl Environ Microbiol 57:419–425

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yue CJ, Jiang Y (2009) Impact of methyl jasmonate on squalene biosynthesis in microalga Schizochytrium mangrovei. Process Biochem 44:923–927

    Article  CAS  Google Scholar 

  • Zeng Y, Ji XJ, Lian M, Ren LJ, Jin LJ, Ouyang PK, Huang H (2011) Development of a temperature shift strategy for efficient docosahexaenoic acid production by a marine fungoid protist, Schizochytrium sp. HX-308. Appl Biochem Biotechnol 164:249–255

    Article  CAS  PubMed  Google Scholar 

  • Zhang CY, Iskandarov U, Klotz ET, Stevens RL, Cahoon RE, Nazarenus TJ, Pereira SL, Cahoon EB (2013) A thraustochytrid diacylglycerol acyltransferase 2 with broad substrate specificity strongly increases oleic acid content in engineered Arabidopsis thaliana seeds. J Exp Bot 64:3189–3200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the NSFC (31170109) and National Marine Public Welfare Industry Special Scientific Research Project (201305022). The views expressed herein are those of the authors and do not necessarily reflect the views of the funding agencies or any of its subagencies. We thank Prof. Dr. Liangcheng Du of the University of Nebraska-Lincoln, Chemistry Department, for his critical reading of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Wang, G. Mechanisms of fatty acid synthesis in marine fungus-like protists. Appl Microbiol Biotechnol 99, 8363–8375 (2015). https://doi.org/10.1007/s00253-015-6920-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6920-7

Keywords

Navigation