Skip to main content

Generation of Arming Yeasts with Active Proteins and Peptides via Cell Surface Display System: Cell Surface Engineering, Bio-Arming Technology

  • Protocol
  • First Online:
Yeast Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2513))

Abstract

The cell surface display system in yeast enables the innovative strategy for improving cellular functions in a wide range of applications such as biofuel production, bioremediation, synthesis of valuable chemicals, recovery of rare metal ions, development of biosensors, and high-throughput screening of protein/peptide library. Display of enzymes for polysaccharide degradation enables the construction of metabolically engineered whole-cell biocatalyst owing to the accessibility of the displayed enzymes to high-molecular-weight polysaccharides. In addition, along with fluorescence-based activity evaluation, fluorescence-activated cell sorting (FACS), and yeast cell chip, the cell surface display system is an effective molecular tool for high-throughput screening of mutated protein/peptide library. In this article, we describe the methods for cell surface display of proteins/peptides of interest on yeast, evaluation of display efficiency, and harvesting of the displayed proteins/peptides from cell surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anonymous (1997) Arming yeast with cell-surface catalysts. Chem Eng News 75:32

    Google Scholar 

  2. Ueda M, Tanaka A (2000) Genetic immobilization of proteins on the yeast cell surface. Biotechnol Adv 18:121–140

    Article  CAS  PubMed  Google Scholar 

  3. Ueda M, Tanaka A (2000) Cell surface engineering of yeast: construction of arming yeast with biocatalyst. J Biosci Bioeng 90:125–136

    Article  CAS  PubMed  Google Scholar 

  4. Kuroda K, Ueda M (2010) Engineering of microorganisms towards recovery of rare metal ions. Appl Microbiol Biotechnol 87:53–60

    Article  CAS  PubMed  Google Scholar 

  5. Kuroda K, Ueda M (2011) Molecular design of the microbial cell surface toward the recovery of metal ions. Curr Opin Biotechnol 22:427–433

    Article  CAS  PubMed  Google Scholar 

  6. Kuroda K, Ueda M (2011) Cell surface engineering of yeast for applications in white biotechnology. Biotechnol Lett 33:1–9

    Article  CAS  PubMed  Google Scholar 

  7. Georgiou G, Poetschke HL, Stathopoulos C, Francisco JA (1993) Practical applications of engineering gram-negative bacterial cell surfaces. Trends Biotechnol 11:6–10

    Article  CAS  PubMed  Google Scholar 

  8. Chen W, Georgiou G (2002) Cell-surface display of heterologous proteins: from high-throughput screening to environmental applications. Biotechnol Bioeng 79:496–503

    Article  CAS  PubMed  Google Scholar 

  9. Yeung YA, Wittrup KD (2002) Quantitative screening of yeast surface-displayed polypeptide libraries by magnetic bead capture. Biotechnol Prog 18:212–220

    Article  CAS  PubMed  Google Scholar 

  10. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557

    Article  CAS  PubMed  Google Scholar 

  11. Fukuda T, Kato-Murai M, Suye S, Ueda M (2007) Development of high-throughput screening system by single-cell reaction using microchamber array chip. J Biosci Bioeng 104:241–243

    Article  CAS  PubMed  Google Scholar 

  12. Aoki W, Yoshino Y, Morisaka H, Tsunetomo K, Koyo H, Kamiya S, Kawata N, Kuroda K, Ueda M (2011) High-throughput screening of improved protease inhibitors using a yeast cell surface display system and a yeast cell chip. J Biosci Bioeng 111:16–18

    Article  CAS  PubMed  Google Scholar 

  13. Fukuda T, Kato-Murai M, Kadonosono T, Sahara H, Hata Y, Suye S, Ueda M (2007) Enhancement of substrate recognition ability by combinatorial mutation of β-glucosidase displayed on the yeast cell surface. Appl Microbiol Biotechnol 76:1027–1033

    Article  CAS  PubMed  Google Scholar 

  14. Matsumoto T, Fukuda H, Ueda M, Tanaka A, Kondo A (2002) Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain. Appl Environ Microbiol 68:4517–4522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shibasaki S, Ueda M, Iizuka T, Hirayama M, Ikeda Y, Kamasawa N, Osumi M, Tanaka A (2001) Quantitative evaluation of the enhanced green fluorescent protein displayed on the cell surface of Saccharomyces cerevisiae by fluorometric and confocal laser scanning microscopic analyses. Appl Microbiol Biotechnol 55:471–475

    Article  CAS  PubMed  Google Scholar 

  16. Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A (2004) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70:1207–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Murai T, Ueda M, Atomi H, Shibasaki Y, Kamasawa N, Osumi M, Kawaguchi T, Arai M, Tanaka A (1997) Genetic immobilization of cellulase on the cell surface of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 48:499–503

    Article  CAS  PubMed  Google Scholar 

  18. Murai T, Ueda M, Kawaguchi T, Arai M, Tanaka A (1998) Assimilation of cellooligosaccharides by a cell surface-engineered yeast expressing β-glucosidase and carboxymethylcellulase from Aspergillus aculeatus. Appl Environ Microbiol 64:4857–4861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Murai T, Ueda M, Shibasaki Y, Kamasawa N, Osumi M, Imanaka T, Tanaka A (1999) Development of an arming yeast strain for efficient utilization of starch by co-display of sequential amylolytic enzymes on the cell surface. Appl Microbiol Biotechnol 51:65–70

    Article  CAS  PubMed  Google Scholar 

  20. Murai T, Ueda M, Yamamura M, Atomi H, Shibasaki Y, Kamasawa N, Osumi M, Amachi T, Tanaka A (1997) Construction of a starch-utilizing yeast by cell surface engineering. Appl Environ Microbiol 63:1362–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Katahira S, Fujita Y, Mizuike A, Fukuda H, Kondo A (2004) Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol 70:5407–5414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Katahira S, Mizuike A, Fukuda H, Kondo A (2006) Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 72:1136–1143

    Article  CAS  PubMed  Google Scholar 

  23. Kuroda K, Shibasaki S, Ueda M, Tanaka A (2001) Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions. Appl Microbiol Biotechnol 57:697–701

    Article  CAS  PubMed  Google Scholar 

  24. Kuroda K, Ueda M, Shibasaki S, Tanaka A (2002) Cell surface-engineered yeast with ability to bind, and self-aggregate in response to, copper ion. Appl Microbiol Biotechnol 59:259–264

    Article  CAS  PubMed  Google Scholar 

  25. Kuroda K, Ueda M (2003) Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying metallothionein and hexa-His. Appl Microbiol Biotechnol 63:182–186

    Article  CAS  PubMed  Google Scholar 

  26. Kuroda K, Ueda M (2006) Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion. Appl Microbiol Biotechnol 70:458–463

    Article  CAS  PubMed  Google Scholar 

  27. Kaya M, Ito J, Kotaka A, Matsumura K, Bando H, Sahara H, Ogino C, Shibasaki S, Kuroda K, Ueda M, Kondo A, Hata Y (2008) Isoflavone aglycones production from isoflavone glycosides by display of β-glucosidase from Aspergillus oryzae on yeast cell surface. Appl Microbiol Biotechnol 79:51–60

    Article  CAS  PubMed  Google Scholar 

  28. Inaba C, Higuchi S, Morisaka H, Kuroda K, Ueda M (2010) Synthesis of functional dipeptide carnosine from nonprotected amino acids using carnosinase-displaying yeast cells. Appl Microbiol Biotechnol 86:1895–1902

    Article  CAS  PubMed  Google Scholar 

  29. Yasui M, Shibasaki S, Kuroda K, Ueda M, Kawada N, Nishikawa J, Nishihara T, Tanaka A (2002) An arming yeast with the ability to entrap fluorescent 17β-estradiol on the cell surface. Appl Microbiol Biotechnol 59:329–331

    Article  CAS  PubMed  Google Scholar 

  30. Takayama K, Suye S, Kuroda K, Ueda M, Kitaguchi T, Tsuchiyama K, Fukuda T, Chen W, Mulchandani A (2006) Surface display of organophosphorus hydrolase on Saccharomyces cerevisiae. Biotechnol Prog 22:939–943

    Article  CAS  PubMed  Google Scholar 

  31. Fushimi T, Miura N, Shintani H, Tsunoda H, Kuroda K, Ueda M (2012) Mutant firefly luciferases with improved specific activity and dATP discrimination constructed by yeast cell surface engineering. Appl Microbiol Biotechnol 97:4003-4011

    Google Scholar 

  32. Kuroda K, Nishitani T, Ueda M (2012) Specific adsorption of tungstate by cell surface display of the newly designed ModE mutant. Appl Microbiol Biotechnol 96:153–159

    Article  CAS  PubMed  Google Scholar 

  33. Nakanishi A, Bae J, Kuroda K, Ueda M (2012) Construction of a novel selection system for endoglucanases exhibiting carbohydrate-binding modules optimized for biomass using yeast cell-surface engineering. AMB Express 2:56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Fukuda T, Shiraga S, Kato M, Suye S, Ueda M (2006) Construction of a cultivation system of a yeast single cell in a cell chip microchamber. Biotechnol Prog 22:944–948

    Article  CAS  PubMed  Google Scholar 

  35. Isogawa D, Fukuda T, Kuroda K, Kusaoke H, Kimoto H, Suye S, Ueda M (2009) Demonstration of catalytic proton acceptor of chitosanase from Paenibacillus fukuinensis by comprehensive analysis of mutant library. Appl Microbiol Biotechnol 85:95–104

    Article  CAS  PubMed  Google Scholar 

  36. Shimoi H, Kitagaki H, Ohmori H, Iimura Y, Ito K (1998) Sed1p is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance. J Bacteriol 180:3381–3387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kuroda K, Matsui K, Higuchi S, Kotaka A, Sahara H, Hata Y, Ueda M (2009) Enhancement of display efficiency in yeast display system by vector engineering and gene disruption. Appl Microbiol Biotechnol 82:713–719

    Article  CAS  PubMed  Google Scholar 

  38. Brenner C, Fuller RS (1992) Structural and enzymatic characterization of a purified prohormone-processing enzyme: secreted, soluble Kex2 protease. Proc Natl Acad Sci U S A 89:922–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Macreadie IG, Horaitis O, Verkuylen AJ, Savin KW (1991) Improved shuttle vectors for cloning and high-level Cu2+-mediated expression of foreign genes in yeast. Gene 104:107–111

    Article  CAS  PubMed  Google Scholar 

  41. Mizuno K, Nakamura T, Ohshima T, Tanaka S, Matsuo H (1989) Characterization of KEX2-encoded endopeptidase from yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 159:305–311

    Article  CAS  PubMed  Google Scholar 

  42. Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Washida M, Takahashi S, Ueda M, Tanaka A (2001) Spacer-mediated display of active lipase on the yeast cell surface. Appl Microbiol Biotechnol 56:681–686

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuyoshi Ueda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kuroda, K., Ueda, M. (2022). Generation of Arming Yeasts with Active Proteins and Peptides via Cell Surface Display System: Cell Surface Engineering, Bio-Arming Technology. In: Mapelli, V., Bettiga, M. (eds) Yeast Metabolic Engineering. Methods in Molecular Biology, vol 2513. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2399-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2399-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2398-5

  • Online ISBN: 978-1-0716-2399-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics