Skip to main content

Correlative Microscopy of Individual Cells: Sequential Application of Microscopic Systems with Increasing Resolution to Study the Nuclear Landscape

  • Protocol
  • First Online:
Imaging Gene Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1042))

Abstract

The term correlative microscopy denotes the sequential visualization of one and the same cell using various microscopic techniques. Correlative microscopy provides a unique platform to combine the particular strength of each microscopic approach and compensate for its specific limitations. As an example, we report results of a correlative microscopic study exploring features of the nuclear landscape in HeLa cells. We present a detailed protocol to first investigate distinct structural features of a living cell in space and time (4D) using spinning disk laser scanning microscopy (SDLSM). Then, after fixation and staining of selected structures (e.g., by means of immunodetection), details of these structures are explored at increasingly higher resolution using three-dimensional (3D) confocal laser scanning microscopy (CLSM); super-resolution fluorescence microscopy, such as three-dimensional structured illumination microscopy (3D-SIM); and transmission electron microscopy (TEM). We discuss problems involved in the comparison of images of a given cell nucleus recorded with different microscopic approaches, which requires not only a compensation for different resolutions but also for various distortions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1 Mbp CDs:

Megabase-sized chromatin domains

3D:

Three-dimensional

3D-SIM:

Three-dimensional structured illumination microscopy

4D:

Four-dimensional

CC:

Chromatin compartment

CLSM:

Confocal laser scanning microscopy

CT–IC:

Chromosome territory–interchromatin compartment

EM:

Electron microscopy

FCS:

Fetal calf serum

FIB:

Focused ion beam

FISH:

Fluorescence in situ hybridization

FRAP:

Fluorescence recovery after photobleaching

GFP:

Green fluorescent protein

H2B-mRFP:

Histone 2B tagged with red fluorescent protein

H3K4me3:

Histone 3 tri-methylated at lysine 4

H3K9me3:

Histone 3 tri-methylated at lysine 9

HCC:

Hypercondensed chromatin

IC:

Interchromatin compartment

OTF:

Optical transfer function

PBS:

Phosphate buffered saline

PBST:

1× PBS with 0.02 % Tween

PFA:

Paraformaldehyde

PR:

Perichromatin region

PS:

Penicillin/streptomycin

PSF:

Point-spread function

RNPs:

Ribonucleoproteins

ROI:

Region of interest

SDLSM:

Spinning disk laser scanning microscopy

SEM:

Scanning electron microscopy

SIM:

Structured illumination microscopy

TEM:

Transmission electron microscopy

WF:

Wide field

References

  1. Caplan J, Niethammer M, Taylor RM 2nd, Czymmek KJ (2011) The power of correlative microscopy: multi-modal, multi-scale, multi-dimensional. Curr Opin Struct Biol 21(5):686–693

    Article  PubMed  CAS  Google Scholar 

  2. Giepmans BN (2008) Bridging fluorescence microscopy and electron microscopy. Histochem Cell Biol 130(2):211–217

    Article  PubMed  CAS  Google Scholar 

  3. Muller-Reichert T, Verkade P (2012) Introduction to correlative light and electron microscopy. Methods Cell Biol 111:xvii–xix

    Article  PubMed  Google Scholar 

  4. Svitkina TM, Borisy GG (1998) Correlative light and electron microscopy of the cytoskeleton of cultured cells. Methods Enzymol 298:570–592

    Article  PubMed  CAS  Google Scholar 

  5. Cremer C, Masters BR (2013) Resolution enhancement techniques in microscopy. Eur Phys J H 38(3):281–344

    Google Scholar 

  6. Toomre DK, Langhorst MF, Davidson MW (2012) Introduction to spinning disk confocal microscopy. http://zeiss-campus.magnet.fsu.edu/articles/spinningdisk/introduction.html. Accessed 29 Nov 2012

  7. Cremer C (2012) Optics far beyond the diffraction limit. In: Träger F (ed) Springer handbook of laser and optics. Springer, New York, pp 1359–1397

    Chapter  Google Scholar 

  8. Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198(Pt 2):82–87

    Article  PubMed  CAS  Google Scholar 

  9. Heintzmann R, Cremer C (1998) Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. Proc SPIE 3568:185–196

    Article  Google Scholar 

  10. Gustafsson MG et al (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94(12):4957–4970

    Article  PubMed  CAS  Google Scholar 

  11. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190(2):165–175

    Article  PubMed  CAS  Google Scholar 

  12. Fiolka R, Shao L, Rego EH, Davidson MW, Gustafsson MG (2012) Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination. Proc Natl Acad Sci U S A 109(14):5311–5315

    Article  PubMed  CAS  Google Scholar 

  13. Shao L, Kner P, Rego EH, Gustafsson MG (2011) Super-resolution 3D microscopy of live whole cells using structured illumination. Nat Methods 8(12):1044–1046

    Article  PubMed  CAS  Google Scholar 

  14. Jones SA, Shim SH, He J, Zhuang X (2011) Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8(6):499–508

    Article  PubMed  CAS  Google Scholar 

  15. Vaughan JC, Jia S, Zhuang X (2012) Ultrabright photoactivatable fluorophores created by reductive caging. Nat Methods 9(12):1181–1184

    Article  PubMed  CAS  Google Scholar 

  16. Denk W, Horstmann H (2004) Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2(11):e329

    Article  PubMed  Google Scholar 

  17. Zankel A, Kraus B, Poelt P, Schaffer M, Ingolic E (2009) Ultramicrotomy in the ESEM, a versatile method for materials and life sciences. J Microsc 233(1):140–148

    Article  PubMed  CAS  Google Scholar 

  18. Knott G, Marchman H, Wall D, Lich B (2008) Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci 28(12):2959–2964

    Article  PubMed  CAS  Google Scholar 

  19. Rouquette J et al (2009) Revealing the high-resolution three-dimensional network of chromatin and interchromatin space: a novel electron-microscopic approach to reconstructing nuclear architecture. Chromosome Res 17(6):801–810

    Article  PubMed  CAS  Google Scholar 

  20. Villinger C et al (2012) FIB/SEM tomography with TEM-like resolution for 3D imaging of high-pressure frozen cells. Histochem Cell Biol 138(4):549–556

    Article  PubMed  CAS  Google Scholar 

  21. Schroeder-Reiter E, Sanei M, Houben A, Wanner G (2012) Current SEM techniques for de- and re-construction of centromeres to determine 3D CENH3 distribution in barley mitotic chromosomes. J Microsc 246(1):96–106

    Article  PubMed  CAS  Google Scholar 

  22. Hayat M (2000) Principles and techniques of electron microscopy: biological applications. Cambridge University Press, Cambridge

    Google Scholar 

  23. Testillano PS et al (1991) A specific ultrastructural method to reveal DNA: the NAMA-Ur. J Histochem Cytochem 39(10):1427–1438

    Article  PubMed  CAS  Google Scholar 

  24. Vazquez-Nin GH, Biggiogera M, Echeverria OM (1995) Activation of osmium ammine by SO2-generating chemicals for EM Feulgen-type staining of DNA. Eur J Histochem 39(2):101–106

    PubMed  CAS  Google Scholar 

  25. Dubochet J, Sartori Blanc N (2001) The cell in absence of aggregation artifacts. Micron 32(1):91–99

    Article  PubMed  CAS  Google Scholar 

  26. Glaeser RM (2008) Cryo-electron microscopy of biological nanostructures. Phys Today 61:48–54

    Article  CAS  Google Scholar 

  27. Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2(4):292–301

    Article  PubMed  CAS  Google Scholar 

  28. Cremer T, Cremer M (2010) Chromosome territories. Cold Spring Harb Perspect Biol 2(3):a003889

    Article  PubMed  Google Scholar 

  29. Dixon JR et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376–380

    Article  PubMed  CAS  Google Scholar 

  30. Lieberman-Aiden E et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293

    Article  PubMed  CAS  Google Scholar 

  31. Markaki Y et al (2012) The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture. Bioessays 34(5):412–426

    Article  PubMed  Google Scholar 

  32. Nora EP et al (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485(7398):381–385

    Article  PubMed  CAS  Google Scholar 

  33. Cremer T et al (2000) Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. Crit Rev Eukaryot Gene Expr 10(2):179–212

    Article  PubMed  CAS  Google Scholar 

  34. Mirny LA (2011) The fractal globule as a model of chromatin architecture in the cell. Chromosome Res 19(1):37–51

    Article  PubMed  CAS  Google Scholar 

  35. Rouquette J, Cremer C, Cremer T, Fakan S (2010) Functional nuclear architecture studied by microscopy: present and future. Int Rev Cell Mol Biol 282:1–90

    Article  PubMed  CAS  Google Scholar 

  36. Mor A et al (2010) Dynamics of single mRNP nucleocytoplasmic transport and export through the nuclear pore in living cells. Nat Cell Biol 12(6):543–552

    Article  PubMed  CAS  Google Scholar 

  37. Albiez H et al (2006) Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks. Chromosome Res 14(7):707–733

    Article  PubMed  CAS  Google Scholar 

  38. Albiez H (2007) Manipulation of global chromatin architecture in the human cell nucleus and critical assessment of current model views. Ludwig-Maximilians-University, Munich, Dissertation

    Google Scholar 

  39. Bornfleth H, Edelmann P, Zink D, Cremer T, Cremer C (1999) Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy. Biophys J 77(5):2871–2886

    Article  PubMed  CAS  Google Scholar 

  40. Strickfaden H, Zunhammer A, van Koningsbruggen S, Kohler D, Cremer T (2010) 4D chromatin dynamics in cycling cells: Theodor Boveri’s hypotheses revisited. Nucleus 1(3):284–297

    Article  PubMed  Google Scholar 

  41. van Steensel B, Dekker J (2010) Genomics tools for unraveling chromosome architecture. Nat Biotechnol 28(10):1089–1095

    Article  PubMed  Google Scholar 

  42. Diaz G, Isola R, Falchi AM, Diana A (1999) CO2-enriched atmosphere on the microscope stage. Biotechniques 27:292–294

    PubMed  CAS  Google Scholar 

  43. Spierenburg GT, Oerlemans FT, van Laarhoven JP, de Bruyn CH (1984) Phototoxicity of N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid-buffered culture media for human leukemic cell lines. Cancer Res 44(5):2253–2254

    PubMed  CAS  Google Scholar 

  44. Hübner B, Strickfaden H, Müller S, Cremer M, Cremer T (2009) Chromosome shattering: a mitotic catastrophe due to chromosome condensation failure. Eur Biophys J 38(6):729–747

    Article  PubMed  Google Scholar 

  45. Markaki Y, Smeets D, Cremer M, Schermelleh L (2013) Fluorescence in situ hybridization applications for super-resolution 3D structured illumination microscopy. Methods Mol Biol 950:43–64

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to Thomas Cremer (DFG grant SFB684, CR-59/29-2).

We are indebted to Stanislav Fakan and Jacques Rouquette for introducing us into the techniques of osmium ammine staining for DNA and TEM and to Yolanda Markaki for helping with establishing immunofluorescence procedures for 3D-SIM. We thank our colleagues Dirk Eick for providing the RNA polymerase II antibodies, Otto Berninghausen for technical support with TEM, and Heinrich Leonhardt for continued support of our studies.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hübner, B., Cremer, T., Neumann, J. (2013). Correlative Microscopy of Individual Cells: Sequential Application of Microscopic Systems with Increasing Resolution to Study the Nuclear Landscape. In: Shav-Tal, Y. (eds) Imaging Gene Expression. Methods in Molecular Biology, vol 1042. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-526-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-526-2_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-525-5

  • Online ISBN: 978-1-62703-526-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics