Skip to main content

Advertisement

Log in

Chromosome shattering: a mitotic catastrophe due to chromosome condensation failure

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Chromosome shattering has been described as a special form of mitotic catastrophe, which occurs in cells with unrepaired DNA damage. The shattered chromosome phenotype was detected after application of a methanol/acetic acid (MAA) fixation protocol routinely used for the preparation of metaphase spreads. The corresponding phenotype in the living cell and the mechanism leading to this mitotic catastrophe have remained speculative so far. In the present study, we used V79 Chinese hamster cells, stably transfected with histone H2BmRFP for live-cell observations, and induced generalized chromosome shattering (GCS) by the synergistic effect of UV irradiation and caffeine posttreatment. We demonstrate that GCS can be derived from abnormal mitotic cells with a parachute-like chromatin configuration (PALCC) consisting of a bulky chromatin mass and extended chromatin fibers that tether centromeres at a remote, yet normally shaped spindle apparatus. This result hints at a chromosome condensation failure, yielding a “shattered” chromosome complement after MAA fixation. Live mitotic cells with PALCCs proceeded to interphase within a period similar to normal mitotic cells but did not divide. Instead they formed cells with highly abnormal nuclear configurations subject to apoptosis after several hours. We propose a factor depletion model where a limited pool of proteins is involved both in DNA repair and chromatin condensation. Chromosome condensation failure occurs when this pool becomes depleted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

FISH:

Fluorescence in situ hybridization

GCS:

Generalized chromosome shattering

H2BmRFP:

Histone H2B conjugated to red fluorescent protein

H3pS10:

Histone H3 with phosphorylated serine at position 10

MAA:

Methanol/acetic acid

PALCC:

Parachute-like chromatin configuration

PCC:

Premature chromosome condensation

PCS:

Partial chromosome shattering

PFA:

Paraformaldehyde

SON:

Supplemental online

References

  • Beaudouin J, Gerlich D, Daigle N, Eils R, Ellenberg J (2002) Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell 108:83–96. doi:10.1016/S0092-8674(01)00627-4

    Article  PubMed  CAS  Google Scholar 

  • Bezrookove V, Smits R, Moeslein G, Fodde R, Tanke HJ, Raap AK, Darroudi F (2003) Premature chromosome condensation revisited: a novel chemical approach permits efficient cytogenetic analysis of cancers. Genes Chromosomes Cancer 38:177–186. doi:10.1002/gcc.10268

    Article  PubMed  Google Scholar 

  • Bignold LP (2002) Hypothesis for the influence of fixatives on the chromatin patterns of interphase nuclei, based on shrinkage and retraction of nuclear and perinuclear structures. Br J Biomed Sci 59:105–113

    PubMed  CAS  Google Scholar 

  • Blank M, Shiloh Y (2007) Programs for cell death: apoptosis is only one way to go. Cell Cycle 6:686–695

    PubMed  CAS  Google Scholar 

  • Blank M, Lerenthal Y, Mittelman L, Shiloh Y (2006) Condensin I recruitment and uneven chromatin condensation precede mitotic cell death in response to DNA damage. J Cell Biol 174:195–206. doi:10.1083/jcb.200604022

    Article  PubMed  CAS  Google Scholar 

  • Blasina A, Price BD, Turenne GA, McGowan CH (1999) Caffeine inhibits the checkpoint kinase ATM. Curr Biol 9:1135–1138. doi:10.1016/S0960-9822(99)80486-2

    Article  PubMed  CAS  Google Scholar 

  • Brown EJ, Baltimore D (2000) ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev 14:397–402

    PubMed  CAS  Google Scholar 

  • Chen ES, Sutani T, Yanagida M (2004) Cti1/C1D interacts with condensin SMC hinge and supports the DNA repair function of condensin. Proc Natl Acad Sci USA 101:8078–8083. doi:10.1073/pnas.0307976101

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury I, Tharakan B, Bhat GK (2006) Current concepts in apoptosis: the physiological suicide program revisited. Cell Mol Biol Lett 11:506–525. doi:10.2478/s11658-006-0041-3

    Article  PubMed  CAS  Google Scholar 

  • Chu EH (1965) Effects of ultraviolet radiation on mammalian cells. I. Induction of chromosome aberrations. Mutat Res 2:75–94. doi:10.1016/0027-5107(65)90010-2

    PubMed  CAS  Google Scholar 

  • Cortez D (2003) Caffeine inhibits checkpoint responses without inhibiting the ataxia-telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) protein kinases. J Biol Chem 278:37139–37145. doi:10.1074/jbc.M307088200

    Article  PubMed  CAS  Google Scholar 

  • Cremer C, Cremer T (1986) Induction of chromosome shattering by ultraviolet light and caffeine: the influence of different distributions of photolesions. Mutat Res 163:33–40. doi:10.1016/0027-5107(86)90055-2

    PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2006) Rise, fall and resurrection of chromosome territories: a historical perspective. Part II. Fall and resurrection of chromosome territories during the 1950s to 1980s. Part III. Chromosome territories and the functional nuclear architecture: experiments and models from the 1990s to the present. Eur J Histochem 50:223–272

    PubMed  CAS  Google Scholar 

  • Cremer C, Gray JW (1982) DNA content of cells with generalized chromosome shattering induced by ultraviolet light plus caffeine. Mutat Res 94:133–142. doi:10.1016/0027-5107(82)90175-0

    PubMed  CAS  Google Scholar 

  • Cremer C, Cremer T, Simickova M (1980a) Induction of chromosome shattering and micronuclei by ultraviolet light and caffeine. I. Temporal relationship and antagonistic effects of the four deoxyribonucleosides. Environ Mutagen 2:339–351. doi:10.1002/em.2860020304

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C, Zimmer J, Zorn C (1980b) UV-micro-irradiation of Chinese hanster cells and posttreatment with caffeine: indication for clastogenic effects remote from the irradiation site. In: Altmann H, Riklis E, Slor H (eds) DNA-repair and late effects. NRCN Publication, Israel, pp 53–62

    Google Scholar 

  • Cremer C, Cremer T, Jabbur G (1981a) Laser-UV-microirradiation of Chinese hamster cells: the influence of the distribution of photolesions on unscheduled DNA synthesis. Photochem Photobiol 33:925–928. doi:10.1111/j.1751-1097.1981.tb05514.x

    Article  PubMed  CAS  Google Scholar 

  • Cremer C, Cremer T, Zorn C, Zimmer J (1981b) Induction of chromosome shattering by ultraviolet irradiation and caffeine: comparison of whole-cell and partial-cell irradiation. Mutat Res 84:331–348. doi:10.1016/0027-5107(81)90202-5

    PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C, Baumann H, Luedtke EK, Sperling K, Teuber V, Zorn C (1982a) Rabl’s model of the interphase chromosome arrangement tested in Chinese hamster cells by premature chromosome condensation and laser-UV-microbeam experiments. Hum Genet 60:46–56. doi:10.1007/BF00281263

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C, Schneider T, Baumann H, Hens L, Kirsch-Volders M (1982b) Analysis of chromosome positions in the interphase nucleus of Chinese hamster cells by laser-UV-microirradiation experiments. Hum Genet 62:201–209. doi:10.1007/BF00333519

    Article  PubMed  CAS  Google Scholar 

  • Cremer M, Grasser F, Lanctot C, Muller S, Neusser M, Zinner R, Solovei I, Cremer T (2008) Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes. Methods Mol Biol 463:205–239. doi:10.1007/978-1-59745-406-3_15

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Paweletz N, Schroeter D (1992) Failure of kinetochore development and mitotic spindle formation in okadaic acid-induced premature mitosis in HeLa cells. Exp Cell Res 201:535–540. doi:10.1016/0014-4827(92)90307-T

    Article  PubMed  CAS  Google Scholar 

  • Gotoh E (2007) Visualizing the dynamics of chromosome structure formation coupled with DNA replication. Chromosoma 116:453–462. doi:10.1007/s00412-007-0109-5

    Article  PubMed  CAS  Google Scholar 

  • Gotoh E (2009) Drug-induced premature chromosome condensation (PCC) protocols: cytogenetic approaches in mitotic chromosome and interphase chromatin. Methods Mol Biol 523:83–92

    Article  PubMed  CAS  Google Scholar 

  • Greubel C, Hable V, Drexler GA, Hauptner A, Dietzel S, Strickfaden H, Baur I, Krucken R, Cremer T, Dollinger G, Friedl AA (2008) Competition effect in DNA damage response. Radiat Environ Biophys 47:423–429. doi:10.1007/s00411-008-0182-z

    Article  PubMed  CAS  Google Scholar 

  • Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, Brinkley BR, Bazett-Jones DP, Allis CD (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106:348–360. doi:10.1007/s004120050256

    Article  PubMed  CAS  Google Scholar 

  • Hepperger C, Otten S, von Hase J, Dietzel S (2007) Preservation of large-scale chromatin structure in FISH experiments. Chromosoma 116:117–133. doi:10.1007/s00412-006-0084-2

    Article  PubMed  CAS  Google Scholar 

  • Hittelman WN, Pollard M (1984) Visualization of chromatin events associated with repair of ultraviolet light-induced damage by premature chromosome condensation. Carcinogenesis 5:1277–1285. doi:10.1093/carcin/5.10.1277

    Article  PubMed  CAS  Google Scholar 

  • Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:366–374. doi:10.1038/35077232

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Kurose A, Tanaka T, Traganos F, Dai W, Darzynkiewicz Z (2006) Sequential phosphorylation of Ser-10 on histone H3 and ser-139 on histone H2AX and ATM activation during premature chromosome condensation: relationship to cell-cycle phase and apoptosis. Cytometry A 69:222–229. doi:10.1002/cyto.a.20257

    PubMed  Google Scholar 

  • Hurley PJ, Bunz F (2007) ATM and ATR: components of an integrated circuit. Cell Cycle 6:414–417

    PubMed  CAS  Google Scholar 

  • Ianzini F, Mackey MA (1997) Spontaneous premature chromosome condensation and mitotic catastrophe following irradiation of HeLa S3 cells. Int J Radiat Biol 72:409–421. doi:10.1080/095530097143185

    Article  PubMed  CAS  Google Scholar 

  • Ismail IH, Hendzel MJ (2008) The gamma-H2A.X: is it just a surrogate marker of double-strand breaks or much more? Environ Mol Mutagen 49:73–82. doi:10.1002/em.20358

    Article  PubMed  CAS  Google Scholar 

  • Johansson F, Lagerqvist A, Filippi S, Palitti F, Erixon K, Helleday T, Jenssen D (2006) Caffeine delays replication fork progression and enhances UV-induced homologous recombination in Chinese hamster cell lines. DNA Repair (Amst) 5:1449–1458. doi:10.1016/j.dnarep.2006.07.005

    Article  CAS  Google Scholar 

  • Karagiannis TC, El-Osta A (2007) Chromatin modifications and DNA double-strand breaks: the current state of play. Leukemia 21:195–200. doi:10.1038/sj.leu.2404478

    Article  PubMed  CAS  Google Scholar 

  • Kiernan J (2000) Formaldehyde, formalin, paraformaldehyde and glutaraldehyde: what they are and what they do. Microsc Today 8:8–12

    Google Scholar 

  • Lau CC, Pardee AB (1982) Mechanism by which caffeine potentiates lethality of nitrogen mustard. Proc Natl Acad Sci USA 79:2942–2946. doi:10.1073/pnas.79.9.2942

    Article  PubMed  CAS  Google Scholar 

  • Legagneux V, Cubizolles F, Watrin E (2004) Multiple roles of condensins: a complex story. Biol Cell 96:201–213. doi:10.1016/j.biolcel.2004.01.003

    Article  PubMed  CAS  Google Scholar 

  • Lehmann AR (2005) The role of SMC proteins in the responses to DNA damage. DNA Repair (Amst) 4:309–314. doi:10.1016/j.dnarep.2004.07.009

    Article  CAS  Google Scholar 

  • Lin JJ, Dutta A (2007) ATR pathway is the primary pathway for activating G2/M checkpoint induction after re-replication. J Biol Chem 282:30357–30362. doi:10.1074/jbc.M705178200

    Article  PubMed  CAS  Google Scholar 

  • Lovelace R (1954) Chromosome shattering by ultraviolet radiation (2650A). Pro Natl Acad Sci USA 40:1129–1135

    Google Scholar 

  • McManus KJ, Hendzel MJ (2005) ATM-dependent DNA damage-independent mitotic phosphorylation of H2AX in normally growing mammalian cells. Mol Biol Cell 16:5013–5025. doi:10.1091/mbc.E05-01-0065

    Article  PubMed  CAS  Google Scholar 

  • Meaburn KJ, Misteli T (2007) Cell biology: chromosome territories. Nature 445:379–781. doi:10.1038/445379a

    Article  PubMed  CAS  Google Scholar 

  • Musk SR, Downes CS, Johnson RT (1988) Caffeine induces uncoordinated expression of cell cycle functions after ultraviolet irradiation. Accelerated cycle transit, sister chromatid exchanges and premature chromosome condensation in a transformed Indian muntjac cell line. J Cell Sci 90(Pt 4):591–599

    PubMed  CAS  Google Scholar 

  • Newport J, Spann T (1987) Disassembly of the nucleus in mitotic extracts: membrane vesicularization, lamin disassembly, and chromosome condensation are independent processes. Cell 48:219–230. doi:10.1016/0092-8674(87)90425-9

    Article  PubMed  CAS  Google Scholar 

  • Nghiem P, Park PK, Kim Y, Vaziri C, Schreiber SL (2001) ATR inhibition selectively sensitizes G1 checkpoint-deficient cells to lethal premature chromatin condensation. Proc Natl Acad Sci USA 98:9092–9097. doi:10.1073/pnas.161281798

    Article  PubMed  CAS  Google Scholar 

  • Nitta M, Kobayashi O, Honda S, Hirota T, Kuninaka S, Marumoto T, Ushio Y, Saya H (2004) Spindle checkpoint function is required for mitotic catastrophe induced by DNA-damaging agents. Oncogene 23:6548–6558. doi:10.1038/sj.onc.1207873

    Article  PubMed  CAS  Google Scholar 

  • Okada H, Mak TW (2004) Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 4:592–603. doi:10.1038/nrc1412

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD, Earnshaw W (2004) Cell biology. Elsevier, Philadelphia

    Google Scholar 

  • Roninson IB, Broude EV, Chang BD (2001) If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Updat 4:303–313. doi:10.1054/drup.2001.0213

    Article  PubMed  CAS  Google Scholar 

  • Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85. doi:10.1146/annurev.biochem.73.011303.073723

    Article  PubMed  CAS  Google Scholar 

  • Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM, Abraham RT (1999) Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 59:4375–4382

    PubMed  CAS  Google Scholar 

  • Schlegel R, Pardee AB (1986) Caffeine-induced uncoupling of mitosis from the completion of DNA replication in mammalian cells. Science 232:1264–1266. doi:10.1126/science.2422760

    Article  PubMed  CAS  Google Scholar 

  • Solimando L, Luijsterburg MS, Vecchio L, Vermeulen W, van Driel R, Fakan S (2009) Spatial organization of nucleotide excision repair proteins after UV-induced DNA damage in the human cell nucleus. J Cell Sci 122:83–91. doi:10.1242/jcs.031062

    Article  PubMed  CAS  Google Scholar 

  • Solovei I, Cavallo A, Schermelleh L, Jaunin F, Scasselati C, Cmarko D, Cremer C, Fakan S, Cremer T (2002) Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp Cell Res 276:10–23. doi:10.1006/excr.2002.5513

    Article  PubMed  CAS  Google Scholar 

  • Sperling K, Rao PN (1974) The phenomenon of premature chromosome condensation: its relevance to basic and applied research. Humangenetik 23:235–258. doi:10.1007/BF00272508

    Article  PubMed  CAS  Google Scholar 

  • Stevens JB, Liu G, Bremer SW, Ye KJ, Xu W, Xu J, Sun Y, Wu GS, Savasan S, Krawetz SA, Ye CJ, Heng HH (2007) Mitotic cell death by chromosome fragmentation. Cancer Res 67:7686–7694. doi:10.1158/0008-5472.CAN-07-0472

    Article  PubMed  CAS  Google Scholar 

  • Telenius H, Pelmear AH, Tunnacliffe A, Carter NP, Behmel A, Ferguson-Smith MA, Nordenskjold M, Pfragner R, Ponder BA (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosomes Cancer 4:257–263. doi:10.1002/gcc.2870040311

    Article  PubMed  CAS  Google Scholar 

  • Van Den Berg HW, Roberts JJ (1976) Inhibition by caffeine of post-replication repair in Chinese hamster cells treated with cis platinum (II) diamminedichloride: the extent of platinum binding to template DNA in relation to the size of low molecular weight nascent DNA. Chem Biol Interact 12:375–390. doi:10.1016/0009-2797(76)90052-1

    Article  Google Scholar 

  • Zorn C, Cremer T, Cremer C, Zimmer J (1976) Laser UV microirradiation of interphase nuclei and post-treatment with caffeine. A new approach to establish the arrangement of interphase chromosomes. Hum Genet 35:83–89. doi:10.1007/BF00295622

    Article  PubMed  CAS  Google Scholar 

  • Zorn C, Cremer C, Cremer T, Zimmer J (1979) Unscheduled DNA synthesis after partial UV irradiation of the cell nucleus. Distribution in interphase and metaphase. Exp Cell Res 124:111–119. doi:10.1016/0014-4827(79)90261-1

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

H. Strickfaden and M. Cremer were supported by CIPSM. The authors are grateful to Fritzi Beck for providing slides with immunostaining of lamins and H3pS10.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Cremer or T. Cremer.

Additional information

This article has been submitted as a contribution to the festschrift entitled “Uncovering cellular sub-structures by light microscopy” in honour of Professor Cremer’s 65th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

249_2009_496_MOESM1_ESM.tif

Fig. 12_SONa, b Three-color painting of Chinese hamster chromosomes 1 (green), 2 (blue), and 5 (red) in V79-H2BmRFP cells. a Apoptotic cells in PFA-fixed cultures after UV/caffeine treatment show a diffuse hybridization signal with strong intermingling of fluorescence signals reflecting a true fragmentation of chromosomes with a concomitant loss of the territorial structure. b Shadow-like chromatin patterns in MAA-fixed cultures lack any detectable hybridization signals. Scale bar = 5 μm Supplementary material 1 (tif 3043 kb)

249_2009_496_MOESM2_ESM.mpg

movie_1 Complete image sequence of the live-cell observation of V79-H2BmRFP control cells showing undisturbed cell proliferation up to 48 h. Images are taken each 15 min. The blurring after time point 1,860 min is due to a slight shifting of the z-stage after changing the medium. Picture sharpness in the late time points decreases due to the increasing cell density that hampers the autofocus function. The appearance of some apoptotic cells beyond time point 41 h is most probably due to the increased cell density. Scale bar = 10 µm Supplementary material 1 (MPG 57526 kb)

249_2009_496_MOESM3_ESM.mpg

movie_2 Complete image sequence of the live-cell observation of V79-H2BmRFP after UV irradiation/caffeine posttreatment. Scale bar = 10 µm Supplementary material 2 (MPG 13601 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hübner, B., Strickfaden, H., Müller, S. et al. Chromosome shattering: a mitotic catastrophe due to chromosome condensation failure. Eur Biophys J 38, 729–747 (2009). https://doi.org/10.1007/s00249-009-0496-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0496-z

Keywords

Navigation