Skip to main content
Log in

Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

In spite of strong evidence that the nucleus is a highly organized organelle, a consensus on basic principles of the global nuclear architecture has not so far been achieved. The chromosome territory–interchromatin compartment (CT-IC) model postulates an IC which expands between chromatin domains both in the interior and the periphery of CT. Other models, however, dispute the existence of the IC and claim that numerous chromatin loops expand between and within CTs. The present study was undertaken to resolve these conflicting views. (1) We demonstrate that most chromatin exists in the form of higher-order chromatin domains with a compaction level at least 10 times above the level of extended 30 nm chromatin fibers. A similar compaction level was obtained in a detailed analysis of a particularly gene-dense chromosome region on HSA 11, which often expanded from its CT as a finger-like chromatin protrusion. (2) We further applied an approach which allows the experimental manipulation of both chromatin condensation and the width of IC channels in a fully reversible manner. These experiments, together with electron microscopic observations, demonstrate the existence of the IC as a dynamic, structurally distinct nuclear compartment, which is functionally linked with the chromatin compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adkins NL, Watts M, Georgel PT (2004) To the 30-nm chromatin fiber and beyond. Biochim Biophys Acta 1677: 12–23.

    PubMed  CAS  Google Scholar 

  • Bacher CP, Guggiari M, Brors B et al. (2006) Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation. Nat Cell Biol 8: 293–299.

    Article  PubMed  CAS  Google Scholar 

  • Bank O (1939) Abhaenigigkeit der Kernstruktur von der Ionenkonzentration. Protoplasma 32: 20–30.

    Article  CAS  Google Scholar 

  • Berezney R, Dubey DD, Huberman JA (2000) Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma 108: 471–484.

    Article  PubMed  CAS  Google Scholar 

  • Berezney R, Mortillaro MJ, Ma H, Wei X, Samarabandu J (1995) The nuclear matrix: a structural milieu for genomic function. Int Rev Cytol 162A: 1–65.

    PubMed  CAS  Google Scholar 

  • Bolzer A, Kreth G, Solovei I et al. (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 3: e157.

    Article  PubMed  CAS  Google Scholar 

  • Bornfleth H, Edelmann P, Zink D, Cremer T, Cremer C (1999) Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy. Biophys J 77: 2871–2886.

    Article  PubMed  CAS  Google Scholar 

  • Branco MR, Pombo A (2006) Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 4: e138.

    Article  PubMed  CAS  Google Scholar 

  • Bridger JM, Herrmann H, Munkel C, Lichter P (1998) Identification of an interchromosomal compartment by polymerization of nuclear-targeted vimentin. J Cell Sci 111: 1241–1253.

    PubMed  CAS  Google Scholar 

  • Chubb JR, Bickmore WA (2003) Considering nuclear compartmentalization in the light of nuclear dynamics. Cell 112: 403–406.

    Article  PubMed  CAS  Google Scholar 

  • Chubb JR, Boyle S, Perry P, Bickmore WA (2002) Chromatin motion is constrained by association with nuclear compartments in human cells. Curr Biol 12: 439–445.

    Article  PubMed  CAS  Google Scholar 

  • Cmarko D, Verschure PJ, Martin TE et al. (1999) Ultrastructural analysis of transcription and splicing in the cell nucleus after bromo-UTP microinjection. Mol Biol Cell 10: 211–223.

    PubMed  CAS  Google Scholar 

  • Cogliati R, Gautier A (1973) Demonstration of DNA and polysaccharides using a new “Schiff type” reagent. C R Acad Sci Hebd Seances Acad Sci D 276: 3041–3044.

    PubMed  CAS  Google Scholar 

  • Cornforth MN, Greulich-Bode KM, Loucas BD et al. (2002) Chromosomes are predominantly located randomly with respect to each other in interphase human cells. J Cell Biol 159: 237–244.

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2: 292–301.

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer M, Dietzel S, Muller S, Solovei I, Fakan, S (2006) Chromosome territories - a functional nuclear landscape. Curr Opin Cell Biol (In press).

  • Cremer T, Dietzel S, Eils R, Lichter P, Cremer C (1995) Chromosome territories, nuclear matrix filaments and interchromatin channels: a topological view on nuclear architecture and function. Paper presented at Kew Chromosome Conference IV (Royal Botanic Gardens, Kew, Royal Botanic Gardens, Kew).

  • Cremer T, Kreth G, Koester H et al. (2000) Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. Crit Rev Eukaryot Gene Expr 10: 179–212.

    PubMed  CAS  Google Scholar 

  • Cremer T, Kupper K, Dietzel S, Fakan S (2004) Higher order chromatin architecture in the cell nucleus: on the way from structure to function. Biol Cell 96: 555–567.

    Article  PubMed  CAS  Google Scholar 

  • Dietzel S, Jauch A, Kienle D et al. (1998) Separate and variably shaped chromosome arm domains are disclosed by chromosome arm painting in human cell nuclei. Chromosome Res 6: 25–33.

    Article  PubMed  CAS  Google Scholar 

  • Dingwall C, Dilworth SM, Black SJ, Kearsey SE, Cox LS, Laskey RA (1987) Nucleoplasmin cDNA sequence reveals polyglutamic acid tracts and a cluster of sequences homologous to putative nuclear localization signals. EMBO J 6: 69–74.

    PubMed  CAS  Google Scholar 

  • Esquivel C, Vazquez-Nin GH, Echeverria O (1989) Evidence of repetitive patterns of chromatin distribution in cell nuclei of rat liver. Acta Anat (Basel) 136: 94–98.

    CAS  Google Scholar 

  • Fakan S (1994) Perichromatin fibrils are in situ forms of nascent transcripts. Trends Cell Biol 4: 86–90.

    Article  PubMed  CAS  Google Scholar 

  • Fakan S (2004a) The functional architecture of the nucleus as analysed by ultrastructural cytochemistry. Histochem Cell Biol 122: 83–93.

    Article  PubMed  CAS  Google Scholar 

  • Fakan S (2004b) Ultrastructural cytochemical analyses of nuclear functional architecture. Eur J Histochem 48: 5–14.

    PubMed  CAS  Google Scholar 

  • Fakan S, Bernhard W (1971) Localisation of rapidly and slowly labelled nuclear RNA as visualized by high resolution autoradiography. Exp Cell Res 67: 129–141.

    Article  PubMed  CAS  Google Scholar 

  • Fakan S, Puvion E, Sphor G (1976) Localization and characterization of newly synthesized nuclear RNA in isolate rat hepatocytes. Exp Cell Res 99: 155–164.

    Article  PubMed  CAS  Google Scholar 

  • Fakan S, Leser G, Martin TE (1984) Ultrastructural distribution of nuclear ribonucleoproteins as visualized by immunocytochemistry on thin sections. J Cell Biol 98: 358–363.

    Article  PubMed  CAS  Google Scholar 

  • Ferreira J, Paolella G, Ramos C, Lamond AI (1997) Spatial organization of large-scale chromatin domains in the nucleus: a magnified view of single chromosome territories. J Cell Biol 139: 1597–1610.

    Article  PubMed  CAS  Google Scholar 

  • Fiegler H, Carr P, Douglas EJ et al. (2003) DNA microarrays for comparative genomic hybridization based on DOP-PCR amplification of BAC and PAC clones. Genes Chromosomes Cancer 36: 361–374.

    Article  PubMed  CAS  Google Scholar 

  • Foster HA, Bridger JM (2005) The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma 114: 212–229.

    Article  PubMed  Google Scholar 

  • Gasser SM (2002) Visualizing chromatin dynamics in interphase nuclei. Science 296: 1412–1416.

    Article  PubMed  CAS  Google Scholar 

  • Gerlich D, Beaudouin J, Kalbfuss B, Daigle N, Eils R, Ellenberg J (2003) Global chromosome positions are transmitted through mitosis in mammalian cells. Cell 112, 751–764.

    Article  PubMed  CAS  Google Scholar 

  • Gorisch SM, Wachsmuth M, Ittrich C, Bacher CP, Rippe K, Lichter P (2004) Nuclear body movement is determined by chromatin accessibility and dynamics. Proc Natl Acad Sci USA 101: 13221–13226.

    Article  PubMed  Google Scholar 

  • Gorisch SM, Lichter P, Rippe K (2005) Mobility of multi-subunit complexes in the nucleus: accessibility and dynamics of chromatin subcompartments. Histochem Cell Biol 123: 217–228.

    Article  PubMed  CAS  Google Scholar 

  • Gruenbaum Y, Margalit A, Goldman RD, Shumaker DK, Wilson KL (2005) The nuclear lamina comes of age. Nat Rev Mol Cell Biol 6: 21–31.

    Article  PubMed  CAS  Google Scholar 

  • Hancock R (2004) A role for macromolecular crowding effects in the assembly and function of compartments in the nucleus. J Struct Biol 146: 281–290.

    Article  PubMed  CAS  Google Scholar 

  • Hansen JC (2002) Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Annu Rev Biophys Biomol Struct 31: 361–392.

    Article  PubMed  CAS  Google Scholar 

  • Horn PJ, Peterson CL (2002) Molecular biology. Chromatin higher order folding-wrapping up transcription. Science 297: 1824–1827.

    Article  PubMed  CAS  Google Scholar 

  • Jackson DA, Pombo A (1998) Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J Cell Biol 140: 1285–1295.

    Article  PubMed  CAS  Google Scholar 

  • Jaunin F, Visser AE, Cmarko D, Aten JA, Fakan S (2000) Fine structural in situ analysis of nascent DNA movement following DNA replication. Exp Cell Res 260: 313–323.

    Article  PubMed  CAS  Google Scholar 

  • Kanda T, Sullivan KF, Wahl GM (1998) Histone–GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol 8: 377–385.

    Article  PubMed  CAS  Google Scholar 

  • Koberna K, Ligasova A, Malinsky J et al. (2005) Electron microscopy of DNA replication in 3-D: evidence for similar-sized replication foci throughout S-phase. J Cell Biochem 94: 126–138.

    Article  PubMed  CAS  Google Scholar 

  • Kosak ST, Groudine M (2004) Form follows function: the genomic organization of cellular differentiation. Genes Dev 18: 1371–1384.

    Article  PubMed  CAS  Google Scholar 

  • Kreth G, Munkel C, Langowski J, Cremer T, Cremer C (1998) Chromatin structure and chromosome aberrations: modeling of damage induced by isotropic and localized irradiation. Mutat Res 404: 77–88.

    PubMed  CAS  Google Scholar 

  • Kreth G, Finsterle J, Cremer C (2004) Virtual radiation biophysics: implications of nuclear structure. Cytogenet Genome Res 104: 157–161.

    Article  PubMed  CAS  Google Scholar 

  • Kuwada Y, Sakamura T (1927) A contribution to the colloidchemical and morphological study of chromosomes. Protoplasma 1: 239–254.

    Article  Google Scholar 

  • Ling JQ, Li T, Hu JF et al. (2006) CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science 312: 269–272.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Velazquez G, Marquez J, Ubaldo E, Corkidi G, Echeverria O, Vazquez Nin GH (1996) Three-dimensional analysis of the arrangement of compact chromatin in the nucleus of G0 rat lymphocytes. Histochem Cell Biol 105: 153–161.

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Samarabandu J, Devdhar RS et al. (1998) Spatial and temporal dynamics of DNA replication sites in mammalian cells. J Cell Biol 143: 1415–1425.

    Article  PubMed  CAS  Google Scholar 

  • Mahy NL, Perry PE, Bickmore WA (2002) Gene density and transcription influence the localization of chromatin outside of chromosome territories detectable by FISH. J Cell Biol 159: 753–763.

    Article  PubMed  CAS  Google Scholar 

  • Manuelidis L (1990) A view of interphase chromosomes. Science 250: 1533–1540.

    Article  PubMed  CAS  Google Scholar 

  • Marshall WF, Straight A, Marko JF et al. (1997) Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol 7: 930–939.

    Article  PubMed  CAS  Google Scholar 

  • Martou G, De Boni U (2000) Nuclear topology of murine, cerebellar Purkinje neurons: changes as a function of development. Exp Cell Res 256: 131–139.

    Article  PubMed  CAS  Google Scholar 

  • Misteli T, Caceres JF, Spector DL (1997) The dynamics of a pre-mRNA splicing factor in living cells. Nature 387: 523–527.

    Article  PubMed  CAS  Google Scholar 

  • Moen PT Jr, Johnson CV, Byron M et al. (2004) Repositioning of muscle-specific genes relative to the periphery of SC-35 domains during skeletal myogenesis. Mol Biol Cell 15: 197–206.

    Article  PubMed  CAS  Google Scholar 

  • Monneron A, Bernhard W (1969) Fine structural organization of the interphase nucleus in some mammalian cells. J Ultrastruct Res 27: 266–288.

    Article  PubMed  CAS  Google Scholar 

  • Munkel C, Eils R, Dietzel S et al. (1999) Compartmentalization of interphase chromosomes observed in simulation and experiment. J Mol Biol 285: 1053–1065.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura H, Morita T, Sato C (1986) Structural organizations of replicon domains during DNA synthetic phase in the mammalian nucleus. Exp Cell Res 165: 291–297.

    Article  PubMed  CAS  Google Scholar 

  • Nash RE, Puvion E, Bernhard W (1975) Perichromatin fibrils as components of rapidly labeled extranucleolar RNA. J Ultrastruct Res 53: 395–405.

    Article  PubMed  CAS  Google Scholar 

  • Nickerson JA (2001) Experimental observations of a nuclear matrix. J Cell Sci 114: 463–474.

    PubMed  CAS  Google Scholar 

  • Osborne CS, Chakalova L, Brown KE et al. (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 36: 1065–1071.

    Article  PubMed  CAS  Google Scholar 

  • Pederson T (1998) Thinking about a nuclear matrix. J Mol Biol 277: 147–159.

    Article  PubMed  CAS  Google Scholar 

  • Pederson T (2000) Half a century of ‘the nuclear matrix’. Mol Biol Cell 11: 799–805.

    PubMed  CAS  Google Scholar 

  • Pederson T (2002) Dynamics and genome-centricity of interchromatin domains in the nucleus. Nat Cell Biol 4: E287–E291.

    Article  PubMed  CAS  Google Scholar 

  • Pederson T, Robbins E (1970) RNA synthesis in HeLa cells. Pattern in hypertonic medium and its similarity to synthesis during G2-prophase. J Cell Biol 47: 734–744.

    Article  PubMed  CAS  Google Scholar 

  • Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell nucleus. Nature 404: 604–609.

    Article  PubMed  CAS  Google Scholar 

  • Richter K, Reichenzeller M, Gorisch SM et al. (2005) Characterization of a nuclear compartment shared by nuclear bodies applying ectopic protein expression and correlative light and electron microscopy. Exp Cell Res 303: 128–137.

    PubMed  CAS  Google Scholar 

  • Robbins E, Pederson T, Klein P (1970) Comparison of mitotic phenomena and effects induced by hypertonic solutions in HeLa cells. J Cell Biol 44: 400–416.

    Article  PubMed  CAS  Google Scholar 

  • Sachs RK, van den Engh G, Trask B, Yokota H, Hearst JE (1995) A random-walk/giant-loop model for interphase chromosomes. Proc Natl Acad Sci USA 92: 2710–2714.

    Article  PubMed  CAS  Google Scholar 

  • Sadoni N, Langer S, Fauth C et al. (1999) Nuclear organization of mammalian genomes. Polar chromosome territories build up functionally distinct higher order compartments. J Cell Biol 146: 1211–1226.

    Article  PubMed  CAS  Google Scholar 

  • Schermelleh L, Solovei I, Zink D, Cremer T (2001) Two-color fluorescence labeling of early and mid-to-late replicating chromatin in living cells. Chromosome Res 9: 77–80.

    Article  PubMed  CAS  Google Scholar 

  • Schermelleh L, Thalhammer S, Heckl W et al. (1999) Laser microdissection and laser pressure catapulting for the generation of chromosome-specific paint probes. Biotechniques 27: 362–367.

    PubMed  CAS  Google Scholar 

  • Shav-Tal Y, Darzacq X, Shenoy SM, et al. (2004) Dynamics of single mRNPs in nuclei of living cells. Science 304: 1797–1800.

    Article  PubMed  CAS  Google Scholar 

  • Solovei I, Kienle D, Little G et al. (2000) Topology of double minutes (dmins) and homogeneously staining regions (HSRs) in nuclei of human neuroblastoma cell lines [In process citation]. Genes Chromosomes Cancer 29: 297–308.

    Article  PubMed  CAS  Google Scholar 

  • Solovei I, Grandi N, Knoth R, Volk B, Cremer T (2004) Positional changes of pericentromeric heterochromatin and nucleoli in postmitotic Purkinje cells during murine cerebellum development. Cytogenet Genome Res 105: 302–310.

    Article  Google Scholar 

  • Spector DL, Fu XD, Maniatis T (1991) Associations between distinct pre-mRNA splicing components and the cell nucleus. EMBO J 10: 3467–3481.

    PubMed  CAS  Google Scholar 

  • Spilianakis CG, Lalioti MD, Town T, Lee GR, Flavell RA (2005) Interchromosomal associations between alternatively expressed loci. Nature 435: 637–645.

    Article  PubMed  CAS  Google Scholar 

  • Sporbert A, Gahl A, Ankerhold R, Leonhardt H, Cardoso MC (2002) DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters. Mol Cell 10: 1355–1365.

    Article  PubMed  CAS  Google Scholar 

  • Su RC, Brown KE, Saaber S, Fisher AG, Merkenschlager M, Smale ST (2004) Dynamic assembly of silent chromatin during thymocyte maturation. Nat Genet 36: 502–506.

    Article  PubMed  CAS  Google Scholar 

  • Tashiro S, Walter J, Shinohara A, Kamada N, Cremer T (2000) Rad51 accumulation at sites of DNA damage and in postreplicative chromatin. J Cell Biol 150: 283–291.

    Article  PubMed  CAS  Google Scholar 

  • Verschure PJ, van Der Kraan I, Manders EM, van Driel R (1999) Spatial relationship between transcription sites and chromosome territories. J Cell Biol 147: 13–24.

    Article  PubMed  CAS  Google Scholar 

  • Visser AE, Jaunin F, Fakan S, Aten JA (2000) High resolution analysis of interphase chromosome domains. J Cell Sci 113: 2585–2593.

    PubMed  CAS  Google Scholar 

  • Volpi EV, Chevret E, Jones T et al. (2000) Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 113: 1565–1576.

    PubMed  CAS  Google Scholar 

  • Walter J, Schermelleh L, Cremer M, Tashiro S, Cremer T (2003) Chromosome order in HeLa cells changes during mitosis and early G1, but is stably maintained during subsequent interphase stages. J Cell Biol 160: 685–697.

    Article  PubMed  CAS  Google Scholar 

  • Williams RR (2003) Transcription and the territory: the ins and outs of gene positioning. Trends Genet 19: 298–302.

    Article  PubMed  CAS  Google Scholar 

  • Xu N, Tsai CL, Lee JT (2006) Transient homologous chromosome pairing marks the onset of X inactivation. Science 311: 1149–1152.

    Article  PubMed  CAS  Google Scholar 

  • Zink D, Cremer T, Saffrich R et al. (1998) Structure and dynamics of human interphase chromosome territories in-vivo. Hum Genet 102: 241–251.

    Article  PubMed  CAS  Google Scholar 

  • Zirbel RM, Mathieu UR, Kurz A, Cremer T, Lichter P (1993) Evidence for a nuclear compartment of transcription and splicing located at chromosome domain boundaries. Chromosome Res 1: 93–106.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Cremer.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albiez, H., Cremer, M., Tiberi, C. et al. Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks. Chromosome Res 14, 707–733 (2006). https://doi.org/10.1007/s10577-006-1086-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-006-1086-x

Key words

Navigation