Skip to main content

Optics Far Beyond the Diffraction Limit

  • Chapter
Springer Handbook of Lasers and Optics

Part of the book series: Springer Handbooks ((SHB))

Abstract

New developments in far-field light microscopy made possible to radically overcome the diffraction limit (ca. 200 nm laterally, 600 nm along the optical axis) of conventional far field microscopy. Here, three principal nanoscopy families are presented: Nanoscopy based on highly focused laser beams, such as 4 Pi-, and STED (stimulated emission depletion) microscopy; nanoscopy based on structured illumination excitation (SIE); and nanoscopy allowing superresolution even in the case of homogeneous excitation (spectrally assigned localization microscopy/SALM): With such techniques, it has become possible to analyze the spatial distribution of fluorescent molecules with a greatly increase light optical resolution down to a few nanometers (≈ 1/100 of the exciting wavelength).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

2CLM:

dual-color localization microscopy

AID:

axial fluorescence intensity distribution

CCD:

charge-coupled device

CLSM:

confocal laser scanning fluorescence microscopy

CP:

coat protein

EM:

electromagnetic

FPALM:

fluorescence photoactivable localization microscopy

FT:

Fourier transform

FWHM:

full width at half-maximum

GSD:

ground-state depletion

GSDIM:

ground-state depletion imaging microscopy

LBO:

LiB3O5

LOBSTER:

light optical biostructure analysis at enhanced resolution

NA:

numerical aperture

NB:

narrow beam

NSOM:

near-field scanning optical microscopy

OTF:

optical transfer function

PA-GFP:

photoactivatable green fluorescent protein

PA:

photon avalanche

PALM:

photoactivated localization microscopy

PALMIRA:

photoactivated localization microscopy with running acquisition

PC:

photonic crystal

PEM:

patterned excitation microscopy

PML:

perfectly matched layer

PSF:

point spread function

RESOLFT:

reversible saturable optical fluorescence transition

RPE:

retinal pigment epithelium

RPM:

reversible photobleaching microscopy

SALM:

spectrally assigned localization microscopy

SHRImP:

single molecule high-resolution imaging with photobleaching

SI:

Système International

SIE:

structured illumination excitation

SIIM:

structured illumination interference microscopy

SMI:

spatially modulated illumination

SNR:

signal-to-noise ratio

SPDM:

spectral precision distance microscopy

SPEM:

saturated patterned excitation microscopy

SPM:

self-phase modulation

STED:

stimulated emission depletion

STORM:

stochastic optical reconstruction microscopy

SW:

standing wave

TMV:

Tobacco mosaic virus

UV:

ultraviolet

VIM:

virtual microscopy

dSTORM:

direct stochastic optical reconstruction microscopy

si:

semiinsulating

References

  1. E. Abbe: Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung, Arch. Mikrosk. Anat. 9, 411–468 (1873), in German

    Google Scholar 

  2. L. Rayleigh: On the theory of optical images, with special reference to the microscope, Philos. Mag. 42, 167–195 (1896)

    Google Scholar 

  3. A. Lewis, M. Isaacson, A. Harootunian, A. Muray: Development of a 500 Å spatial resolution light microscope. I. Light is efficiently transmitted through 1/16 diameter apertures, Ultramicroscopy 13, 227–231 (1984)

    Article  Google Scholar 

  4. D.W. Pohl, W. Denk, M. Lanz: Optical stethoscopy: Image recording with resolution, Appl. Phys. Lett. 44, 651–653 (1984)

    Article  ADS  Google Scholar 

  5. C. Cremer, T. Cremer: Considerations on a laser-scanning-microscope with high resolution and depth of field, Microsc. Acta 81, 31–44 (1978)

    Google Scholar 

  6. S.W. Hell: Double confocal microscope, Eur. Patent 0491289 (1990)

    Google Scholar 

  7. S.W. Hell, E.H.K. Stelzer: Properties of a 4Pi confocal fluorescence microscope, J. Opt. Soc. Am. A 9, 2159–2166 (1992)

    Article  ADS  Google Scholar 

  8. S.W. Hell, S. Lindek, C. Cremer, E.H.K. Stelzer: Measurement of the 4Pi-confocal point spread function proves 75 nm axial resolution, Appl. Phys. Lett. 64, 1335–1337 (1994)

    Article  ADS  Google Scholar 

  9. P.E. Hänninen, S.W. Hell, J. Salo, E. Soini, C. Cremer: Two-photon excitation 4Pi confocal microscope: Enhanced axial resolution microscope for biological research, Appl. Phys. Lett. 66, 1698–1700 (1995)

    Article  ADS  Google Scholar 

  10. S.W. Hell: Toward fluorescence nanoscopy, Nat. Biotechnol. 2, 134–1355 (2003)

    Google Scholar 

  11. S.W. Hell: Far-field optical nanoscopy, Science 316, 1153–1158 (2007)

    Article  ADS  Google Scholar 

  12. C. Cremer, T. Cremer: Procedure for the imaging and modification of object details with dimensions below the range of visible wavelengths, German Patent Appl. No. 2116521 (1972), in German

    Google Scholar 

  13. S.W. Hell, J. Wichmann: Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy, Opt. Lett. 19, 780–782 (1994)

    Article  ADS  Google Scholar 

  14. M. Schrader, F. Meinecke, K. Bahlmann, M. Kroug, C. Cremer, E. Soini, S.W. Hell: Monitoring the excited state of a dye in a microscope by stimulated emission, Bioimaging 3, 147–153 (1995)

    Article  Google Scholar 

  15. G. Donnert, J. Keller, R. Medda, M.A. Andrei, S.O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, S.W. Hell: Macromolecular-scale resolution in biological fluorescence microscopy, Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006)

    Article  ADS  Google Scholar 

  16. K.I. Willig, S.O. Rizzoli, V. Westphal, R. Jahn, S.W. Hell: STED-microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis, Nature 440, 935–939 (2006)

    Article  ADS  Google Scholar 

  17. G. Donnert, J. Keller, C.A. Wurm, S.O. Rizzoli, V. Westphal, A. Schönle, R. Jahn, S. Jakobs, C. Eggeling, S.W. Hell: Two-color far-field fluorescence nanoscopy, Biophys. J. 92, L67–L69 (2007)

    Article  Google Scholar 

  18. E. Rittweger, K.Y. Han, S.E. Irvine, C. Eggeling, S.W. Hell: STED microscopy reveals crystal colour centres with nanometric resolution, Nat. Photonics 3, 144–147 (2009)

    Article  ADS  Google Scholar 

  19. S.W. Hell: Microscopy and its focal switch, Nat. Methods 6, 24–32 (2009)

    Article  Google Scholar 

  20. S.W. Hell, M. Kroug: Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit, Appl. Phys. B 5, 495–497 (1995)

    Article  ADS  Google Scholar 

  21. R. Heintzmann, C. Cremer: Lateral modulated excitation microscopy: Improvement of resolution by using a diffraction grating, Proc. SPIE 3568, 185–196 (1999)

    Article  ADS  Google Scholar 

  22. M.G.L. Gustafsson: Extended resolution fluorescence microscopy, Curr. Opin. Struct. Biol. 9, 627–634 (1999)

    Article  MathSciNet  Google Scholar 

  23. M.G.L. Gustafsson: Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy, J. Microsc. 198, 82–87 (2000)

    Article  Google Scholar 

  24. M. Gustafsson: Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution, Proc. Natl. Acad. Sci. USA 102(37), 13081–13086 (2005)

    Article  ADS  Google Scholar 

  25. M. Gustafsson, L. Shao, P.M. Carlton, C.J.R. Wang, I.N. Golubovskaya, W.Z. Cande, D.A. Agard, J.W. Sedat: Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination, Biophys. J. 94(12), 4957–4970 (2008)

    Article  Google Scholar 

  26. C. Cremer, M. Hausmann, J. Bradl, B. Rinke: German Patent Application No. 196.54.824.1/DE, submitted Dec 23, 1996, European Patent EP 1997953660, 08.04.1999, Japanese Patent JP 1998528237, 23.06.1999, United States Patent US 09331644, 25.08.1999

    Google Scholar 

  27. C. Cremer, P. Edelmann, H. Bornfleth, G. Kreth, H. Muench, H. Luz, M. Hausmann: Principles of spectral precision distance confocal microscopy for the analysis of molecular nuclear structure. In: Handbook of Computer Vision and Applications, Vol. 3, ed. by B. Jähne, H. Haußecker, P. Geißler (Academic, New York 1999) pp. 839–857

    Google Scholar 

  28. M. Heilemann, D.P. Herten, R. Heintzmann, C. Cremer, C. Müller, P. Tinnefeld, K.D. Weston, J. Wolfrum, M. Sauer: High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy, Anal. Chem. 74(14), 3511–3517 (2002)

    Article  Google Scholar 

  29. C. Cremer, A.V. Failla, B. Albrecht: Far field light microscopical method, system and computer program product for analysing at least one object having size, US Patent 7298461, filed Oct. 9, 2002, Pub. Date April 17, 2003

    Google Scholar 

  30. C. Cremer, A.V. Failla, B. Albrecht: United States Patent No. US 7298461 B2 submitted Oct 9, 2001

    Google Scholar 

  31. D.H. Burns, J.B. Callis, G.D. Christian, E.R. Davidson: Strategies for attaining superresolution using spectroscopic data as constraints, Appl. Opt. 24(2), 154–161 (1985)

    Article  ADS  Google Scholar 

  32. E. Betzig: Proposed method for molecular optical imagin, Opt. Lett. 20, 237 (1995)

    Article  ADS  Google Scholar 

  33. P. Edelmann, A. Esa, M. Hausmann, C. Cremer: Confocal laser scanning microscopy: In situ determination of the confocal point-spread function and the chromatic shifts in intact cell nuclei, Optik 110, 194–198 (1999)

    Google Scholar 

  34. A.M. van Oijen, J. Köhler, J. Schmidt, M. Müller, G.J. Brakenhoff: 3-Dimensional super-resolution by spectrally selective imaging, Chem. Phys. Lett. 192(1–2), 182–187 (1998)

    Google Scholar 

  35. H. Bornfleth, E.H.K. Sätzler, R. Eils, C. Cremer: High-precision distance measurements and volume-conserving segmentation of objects near and below the resolution limit in three-dimensional confocal fluorescence microscopy, J. Microsc. 189, 118–136 (1998)

    Article  Google Scholar 

  36. C. Cremer, R. Kaufmann, M. Gunkel, S. Pres, Y. Weiland, P. Müller, T. Ruckelshausen, P. Lemmer, F. Geiger, S. Degenhard, C. Wege, N.A.W. Lemmermann, R. Holtappels, H. Strickfaden, M. Hausmann: Superresolution Imaging of biological nanostructures by spectral precision distance microscopy (SPDM), Biotechnol. J. 6, 1037–1051 (2011)

    Article  Google Scholar 

  37. C.J.R. Sheppard, T. Wilson: Image formation in scanning microscopes with partially coherent source and detector, Opt. Acta 25, 315–325 (1978)

    Article  ADS  Google Scholar 

  38. E.H. Stelzer, I. Wacker, J.R. De Mey: Confocal fluorescence microscopy in modern cell biology, Semin. Cell Biol. 2, 145–152 (1991)

    Google Scholar 

  39. G.J. Brakenhoff, H.T.M. van der Voort, E.A. van Spronsen, W.A.M. Linnemanns, N. Nanninga: Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal laserscanning microscopy, Nature 317, 748–749 (1985)

    Article  ADS  Google Scholar 

  40. J.B. Pawley: Handbook of Confocal Microscopy, 2nd edn. (Plenum, New York 2006)

    Book  Google Scholar 

  41. G.J. Brakenhoff, P. Blom, P. Barends: Confocal scanning light microscopy with high aperture immersion lenses, J. Microsc. 117, 219–232 (1979)

    Article  Google Scholar 

  42. C. Cremer, C. Zorn, T. Cremer: An ultraviolet laser microbeam for 257 nm, Microsc. Acta 75, 331–337 (1974)

    Google Scholar 

  43. M.M. Born, E. Wolf: Principles of Optics (Pergamon, Oxford 1975)

    Google Scholar 

  44. K.R. Chen (2009): Focusing of light beyond the diffraction limit, arxiv.org/pdf/4623v1

  45. J. v. Hase, C. Cremer: unpublished numerical electromagnetic calculations

    Google Scholar 

  46. J. v. Hase: C. Cremer, unpublished

    Google Scholar 

  47. R. Dorn, S. Quabis, G. Leuchs: Sharper focus for polarized light beam, Phys. Rev. Lett. 91, 233901 (2003)

    Article  ADS  Google Scholar 

  48. A. Egner, S. Jakobs, S.W. Hell: Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast, Proc. Natl. Acad. Sci. USA 99, 3370–3375 (2002)

    Article  ADS  Google Scholar 

  49. J. Bewersdorf, B.T. Bennett, K.L. Knight: H2AX chromatin structures and their response to DNA damage revealed by 4Pi microscopy, Proc. Natl. Acad. Sci. USA 103, 18137–18142 (2006)

    Article  ADS  Google Scholar 

  50. D. Baddeley, C. Carl, C. Cremer: Pi microscopy deconvolution with a variable point-spread function, Appl. Opt. 45, 7056–7064 (2006)

    Article  ADS  Google Scholar 

  51. M. Lang, T. Jegou, I. Chung, K. Richter, S. Münch, A. Udvarhelyi, C. Cremer, P. Hemmerich, J. Engelhardt, S. Hell, K. Rippe: On the three-dimensional organization of promyelocytic leukemia nuclear bodies, J. Cell Sci. 123, 392–412 (2010)

    Article  Google Scholar 

  52. J. Bradl, M. Hausmann, B. Schneider, B. Rinke, C. Cremer: A versatile 2pi-tilting device for fluorescence microscopes, J. Microsc. 176, 211–221 (1994)

    Article  Google Scholar 

  53. J. Bradl, B. Rinke, B. Schneider, M. Hausmann, C. Cremer: Improved resolution in practical light microscopy by means of a glass fibre 2pi-tilting device, Proc. SPIE 2628, 140–146 (1996)

    Article  ADS  Google Scholar 

  54. F. Staier, H. Eipel, P. Matula, A.V. Evsikov, M. Kozubek, C. Cremer, M. Hausmann: Micro axial tomography: A miniaturized, versatile stage device to overcome resolution anisotropy in fluorescence light microscopy, Rev. Sci. Instr. 82, 093701 (2011)

    Article  ADS  Google Scholar 

  55. S.C. Baer: Method and Apparatus for improving resolution in scanned optical system, Filed: July 15, 1994, Date of Patent: February 2, 1999. Patent number: 5866911

    Google Scholar 

  56. K.I. Willig, B. Harke, R. Medda, S.W. Hell: STED microscopy with continuous wave beams, Nat. Methods 4, 915–918 (2007)

    Article  Google Scholar 

  57. U.V. Nagerl, K.I. Willig, B. Hein, S.W. Hell, T. Bonhoeffer: Live-cell imaging of dendritic spines by STED microscopy, Proc. Natl. Acad. Sci. USA 105, 18982–18987 (2008)

    Article  ADS  Google Scholar 

  58. V. Westphal, S.O. Rizzoli, M.A. Lauterbach, D. Kamin, R. Jahn, S.W. Hell: Video-rate far-field optical nanoscopy dissects synaptic vesicle movement, Science 320, 246–249 (2008)

    Article  ADS  Google Scholar 

  59. R. Schmidt, C.A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, S.W. Hell: Spherical nanosized focal spot unravels the interior of cells, Nat. Methods 5, 539–544 (2008)

    Article  Google Scholar 

  60. S. Bretschneider, C. Eggeling, S.W. Hell: Breaking the diffraction barrier in fluorescence microscopy by optical shelving, Phys. Rev. Lett. 98, 218103 (2007)

    Article  ADS  Google Scholar 

  61. J. Reymann, D. Baddeley, M. Gunkel, P. Lemmer, W. Stadter, T. Jegou, K. Rippe, C. Cremer, U. Birk: High-precision structural analysis of subnuclear complexes in fixed and live cells via spatially modulated illumination (SMI) microscopy, Chromosome Res. 16(3), 367–382 (2008)

    Article  Google Scholar 

  62. A. Failla, A. Cavallo, C. Cremer: Subwavelength size determination by spatially modulated illumination virtual microscopy, Appl. Opt. 41, 6651–6659 (2002)

    Article  ADS  Google Scholar 

  63. A. Schwentker, H. Bock, M. Hofmann, S. Jakobs, J. Bewersdorf, C. Eggeling, S.W. Hell: Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching, Microsc. Res. Tech. 70, 269–280 (2007)

    Article  Google Scholar 

  64. R. Heintzmann, T. Jovin, C. Cremer: Saturated patterned excitation microscopy – a concept for optical resolution improvement, J. Opt. Soc. Am. A 19, 1599–1609 (2002)

    Article  ADS  Google Scholar 

  65. B. Bailey, D. Farkas, D. Taylor, F. Lanni: Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation, Nature 366, 44–48 (1993)

    Article  ADS  Google Scholar 

  66. J. Frohn, H. Knapp, A. Stemmer: True optical resolution beyond the Rayleigh limit achieved by standing wave illumination, Proc. Natl. Acad. Sci. USA 97, 7232–7236 (2000)

    Article  ADS  Google Scholar 

  67. B. Albrecht, A.V. Failla, A. Schweitzer, C. Cremer: Spatially modulated illumination microscopy allows axial distance resolution in the nanometer range, Appl. Opt. 41, 80–87 (2002)

    Article  ADS  Google Scholar 

  68. B. Albrecht, A.V. Failla, R. Heintzmann, C. Cremer: Spatially modulated illumination microscopy: Online visualization of intensity distribution and prediction of nanometer precision of axial distance measurements by computer simulations, J. Biomed. Opt. 6, 292 (2001)

    Article  ADS  Google Scholar 

  69. A.V. Failla, C. Cremer: Virtual spatially modulated illumination microscopy prediction of axial distance measurement, Proc. SPIE 4260, 120–125 (2001)

    Article  ADS  Google Scholar 

  70. D. Baddeley, C. Batram, Y. Weiland, C. Cremer, U.J. Birk: Nanostructure analysis using spatially modulated illumination microscopy, Nat. Protoc. 2, 2640–2646 (2007)

    Article  Google Scholar 

  71. S. Martin, A.V. Failla, U. Spoeri, C. Cremer, A. Pombo: Measuring the Size of Biological Nanostructures with Spatially Modulated Illumination Microscopy, Mol. Biol. Cell 15, 2449–2455 (2004)

    Article  Google Scholar 

  72. H. Mathee, D. Baddeley, C. Wotzlaw, C. Cremer, U. Birk: Spatially modulated illumination microscopy using one objective lens, Opt. Eng. 46, 083603/1–083603/8 (2007)

    Article  ADS  Google Scholar 

  73. G. Hildenbrand, A. Rapp, U. Spori, C. Wagner, C. Cremer, M. Hausmann: Nano-sizing of specific gene domains in intact human cell nuclei by spatially modulated illumination light microscopy, Biophys. J. 88, 4312–4318 (2005)

    Article  Google Scholar 

  74. U.J. Birk, I. Upmann, D. Toomre, C. Wagner, C. Cremer: Size estimation of protein clusters in the nanometer range by using spatially modulated illumination microscopy, Mod. Res. Educ. Top. Microsc. 1, 272–279 (2007)

    Google Scholar 

  75. D. Baddeley, Y. Weiland, C. Batram, U. Birk, C. Cremer: Model based precision structural measurements on barely resolved objects, J. Microsc. 237, 70–78 (2010)

    Article  MathSciNet  Google Scholar 

  76. L. Schermelleh, P.M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M.C. Cardoso, D.A. Agard, M.G.L. Gustafsson, H. Leonhardt, J.W. Sedat: Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy, Science 320, 1332–1336 (2008)

    Article  ADS  Google Scholar 

  77. Y. Markaki, M. Gunkel, L. Schermelleh, S. Beichmanis, J. Neumann, M. Heidemann, H. Leonhardt, D. Eick, C. Cremer, T. Cremer: Functional nuclear organization of transcription and DNA replication: A topographical marriage between chromatin domains and the interchromatin compartment, Cold Spring Harb. Symp. Quant. Biol. 75, 475–492 (2010)

    Article  Google Scholar 

  78. M. Hausmann, B. Schneider, J. Bradl, C. Cremer: High-precision distance microscopy of 3D-nanostructures by a spatially modulated excitation fluorescence microscope, Proc. SPIE 3197, 217–222 (1997)

    Article  ADS  Google Scholar 

  79. B. Schneider, B. Albrecht, P. Jaeckle, D. Neofotistos, S. Söding, T. Jäger, C. Cremer: Nanolocalization measurements in spatially modulated illumination microscopy using two coherent illumination beams, Proc. SPIE 3921, 321–330 (2000)

    Article  ADS  Google Scholar 

  80. G. Best, R. Amberger, D. Baddeley, T. Ach, S. Dithmar, R. Heintzmann, C. Cremer: Structured illumination microscopy of autofluorescent aggregations in human tissue, Micron 42, 330–335 (2011)

    Article  Google Scholar 

  81. A. Brunner, G. Best, R. Amberger, P. Lemmer, T. Ach, S. Dithmar, R. Heintzmann, C. Cremer: Fluorescence microscopy with structured excitation illumination. In: Handbook of Biomedical Optics, ed. by D.A. Boas, C. Pitris, N. Ramanujam (CRC, Boca Raton 2011) pp. 543–560

    Chapter  Google Scholar 

  82. R. Heintzmann: Saturated patterned excitation microscopy with two-dimensional excitation patterns, Micron 34, 283–291 (2003)

    Article  Google Scholar 

  83. A. Esa, P. Edelmann, L. Trakthenbrot, N. Amariglio, G. Rechavi, M. Hausmann, C. Cremer: 3D-spectral precision distance microscopy (SPDM) of chromatin nanostructures after triple-colour labeling: A study of the BCR region on chromosome 22 and the Philadelphia chromosome, J. Microsc. 199, 96–105 (2000)

    Article  Google Scholar 

  84. A. Esa, A.E. Coleman, P. Edelmann, S. Silva, C. Cremer, S. Janz: Conformational differences in the 3D-nanostructure of the immunoglobulin heavy-chain locus, a hotspot of chromosomal translocations in B lymphocytes, Cancer Genet. Cytogen. 127, 168–173 (2001)

    Article  Google Scholar 

  85. S. van Aert, D. van Dyck, A.J. den Dekker: Resolution of coherent and incoherent imaging systems reconsidered – Classical criteria and a statistical alternative, Opt. Express 14, 3830–3839 (2006)

    Article  ADS  Google Scholar 

  86. P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, C. Cremer: SPDM: Light microscopy with single-molecule resolution at the nanoscale, Appl. Phys. B 93, 1–12 (2008)

    Article  ADS  Google Scholar 

  87. R. Kaufmann, P. Lemmer, M. Gunkel, Y. Weiland, P. Müller, M. Hausmann, D. Baddeley, R. Amberger, C. Cremer: SPDM – Single molecule superresolution of cellular nanostructures, Proc. SPIE 7185, 71850J (2009)

    Article  ADS  Google Scholar 

  88. C. Cremer, A. von Ketteler, P. Lemmer, R. Kaufmann, Y. Weiland, P. Mueller, M. Hausmann, D. Baddeley, A. Amberger: Far field fluorescence microscopy of cellular structures at molecular resolution. In: Microscopy, Nanoscopy and Multidimensional Optical Fluorescence Microscopy, ed. by A. Diaspro (Taylor Francis, New York 2010) pp. 3/1–3/35

    Google Scholar 

  89. A. Pertsinidis, Y. Zhang, S. Chu: Subnanometre single-molecule localization, registration and distance measurements, Nature 466, 647–651 (2010)

    Article  ADS  Google Scholar 

  90. R.E. Thompson, D.R. Larson, W.W. Webb: Precise nanometer localization analysis for individual fluorescent probes, Biophys. J. 82, 2753–2775 (2002)

    Article  Google Scholar 

  91. J. Rauch, M. Hausmann, I. Solovei, B. Horsthemke, T. Cremer, C. Cremer: Measurement of local chromatin compaction by spectral precision distance microscopy, Proc. SPIE 4164, 1–9 (2000)

    Article  ADS  Google Scholar 

  92. T.D. Lacoste, X. Michalet, F. Pinaud, D.S. Chemla, A.P. Alivisatos, S. Weiss: Ultrahigh-resolution multicolor colocalization of single fluorescent probes, Proc. Natl. Acad. Sci. USA 97, 9461–9466 (2000)

    Article  ADS  Google Scholar 

  93. M. Schmidt, M. Nagorni, S.W. Hell: Subresolution axial distance measurements in far-field fluorescence microscopy with precision of 1 nanometer, Rev. Sci. Instrum. 71, 2742–2745 (2000)

    Article  ADS  Google Scholar 

  94. J. Rauch, I. Knoch, I. Solovei, K. Teller, S. Stein, K. Buiting, B. Horsthemke, J. Langowski, T. Cremer, M. Hausmann, C. Cremer: Lightoptical precision measurements of the active and inactive Prader-Willi Syndrome imprinted regions in human cell nuclei, Differentiation 76, 66–83 (2008)

    Google Scholar 

  95. L.-O. Tykocinski, A. Sinemus, E. Rezavandy, Y. Weiland, D. Baddddeley, C. Cremer, S. Sonntag, K. Willeke, J. Derbinski, B. Kyewski: Epigenetic regulation of promiscuous gene expression in thymic medullary epithelial cells, Proc. Natl. Acad. Sci. USA 107, 19426–19431 (2010)

    Article  ADS  Google Scholar 

  96. K.A. Lidke, B. Rieger, T.M. Jovin, R. Heintzmann: Superresolution by localization of quantum dots using blinking statistics, Opt. Express 13, 7052–7062 (2005)

    Article  ADS  Google Scholar 

  97. A. Matsuda, L. Shao, J. Boulanger, C. Kervrann, P.M. Carlton, P. Kner, D. Agard, J.W. Sedat: Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFP-Histones, PLoS ONE 5(e12768), 1–12 (2010)

    Google Scholar 

  98. E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, H.F. Hess: Imaging intracellular fluorescent proteins at nanometer resolution, Science 313(5793), 1642–1645 (2006)

    Article  ADS  Google Scholar 

  99. J.S. Biteen, M.A. Thompson, N.K. Tselentis, G.R. Bowman, L. Shapiro, W.E. Moerner: Single-moldecule active-control microscopy (SMACM) with photo-reactivable EYFP for imaging biophysical processes in live cells, Nat. Methods 5, 947–949 (2008)

    Article  Google Scholar 

  100. H. Shroff, C.G. Galbraith, J.A. Galbraith, E. Betzig: Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics, Nat. Methods 5, 417–423 (2008)

    Article  Google Scholar 

  101. S. Hess, T. Girirajan, M. Mason: Ultra-high resolution imaging by fluorescence photoactivation localization microscopy, Biophys. J. 91, 4258–4272 (2006)

    Article  ADS  Google Scholar 

  102. S.T. Hess, T.J. Gould, M.V. Gudheti, S.A. Maas, K.D. Mills, J. Zimmerberg: Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories, Proc. Natl. Acad. Sci. USA 104, 17370–17375 (2007)

    Article  ADS  Google Scholar 

  103. M. Rust, M. Bates, X. Zhuang: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nat. Methods 3, 793–795 (2006)

    Article  Google Scholar 

  104. B. Huang, W. Wang, M. Bates, X. Zhuang: Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy, Science 319, 810–813 (2008)

    Article  ADS  Google Scholar 

  105. A. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A.C. Stiel, S. Jakobs, C. Eggeling, A. Schönle, S.W. Hell: Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters, Biophys. J. 93, 3285–3290 (2007)

    Article  ADS  Google Scholar 

  106. C. Geisler, A. Schönle, C. von Middendorff, H. Bock, C. Eggeling, A. Egner, S.W. Hell: Resolution of λ/10 in fluorescence microscopy using fast single molecule photo-switching, Appl. Phys. A 88, 223–226 (2007)

    Article  ADS  Google Scholar 

  107. M. Andresen, A.C. Stiel, F. Jonas, D. Wenzel, A. Schönle, A. Egner, C. Eggeling, S.W. Hell, S. Jakobs: Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy, Nat. Biotechnol. 26(9), 1035–1040 (2008)

    Article  Google Scholar 

  108. R. Kaufmann, P. Müller, M. Hausmann, C. Cremer: Nanoimaging cellular structures in label-free human cells by spectrally assigned localization microscopy, Micron 42, 348–352 (2011)

    Article  Google Scholar 

  109. M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer: Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes, Angew. Chem. 47, 6172–6176 (2008)

    Article  Google Scholar 

  110. C. Steinhauer, C. Forthmann, J. Vogelsang, P. Tinnefeld: Superresolution Microscopy on the Basis of Engineered Dark States, J. Am. Chem. Soc. 130, 16840–16841 (2008)

    Article  Google Scholar 

  111. J. Fölling, M. Bossi, H. Bock, R. Medda, C.A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S.W. Hell: Fluorescence nanoscopy by ground-state depletion and single-molecule return, Nat. Methods 5, 943–945 (2008)

    Article  Google Scholar 

  112. M. Gunkel, F. Erdel, K. Rippe, P. Lemmer, R. Kaufmann, C. Hörmann, C. Roman, R. Amberger, C. Cremer: Dual color localization microscopy of cellular nanostructures, Biotechnol. J. 4, 927–938 (2009)

    Article  Google Scholar 

  113. D. Baddeley, I.D. Jayasinghe, C. Cremer, M.B. Cannell, C. Soeller: Light-induced dark states of organic fluorochromes enable 30 nm resolution imaging in standard media, Biophys. J. 96(2), L22–L24 (2009)

    Article  Google Scholar 

  114. D. Baddeley, I.D. Jayasinghe, L. Lam, S. Rossberger, M.B. Cannell, C. Soeller: Optical single-channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes, Proc. Natl. Acad. Sci. USA 106, 22275–22280 (2009)

    Article  ADS  Google Scholar 

  115. D. Baddeley, D. Crossman, S. Rossberger, J.E. Cheyne, J.M. Montgomery, I.D. Jayasinghe, C. Cremer, M.B. Cannell, C. Soeller: 4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues, PLoS ONE 6(5), e20645 (2011)

    Article  ADS  Google Scholar 

  116. M.P. Gordon, T. Ha, P.R. Selvin: Single-molecule high-resolution imaging with photobleaching, Proc. Natl. Acad. Sci. USA 101, 6462–6465 (2004)

    Article  ADS  Google Scholar 

  117. D. Sinnecker, P. Voigt, N. Hellwig, M. Schaefer: Reversible photobleaching of enhanced green fluorescent proteins, Biochemistry 44(18), 7085–7094 (2005)

    Article  Google Scholar 

  118. G. Shtengel, J.A. Galbraith, C.G. Galbraith, J. Lippincott-Schwartz, J.M. Gillette, S. Manleyd, R. Sougrat, C.M. Watermane, P. Kanchanawong, M.W. Davidson, R.D. Fetter, H.F. Hess: Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure, Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009)

    Article  ADS  Google Scholar 

  119. J. Hüve, R. Wesselmann, M. Kahms, R. Peters: 4Pi microscopy of the nuclear pore complex, Biophys. J. 95, 877–885 (2008)

    Article  Google Scholar 

  120. R. Kaufmann, P. Müller, M. Hausmann, C. Cremer: Analysis of Her2/neu membrane protein clusters in different types of breast cancer cells using localization microscopy, J. Microsc. 242, 46–54 (2010)

    Article  Google Scholar 

  121. M. Bohn, P. Diesinger, R. Kaufmann, Y. Weiland, P. Müller, M. Gunkel, A. von Ketteler, P. Lemmer, M. Hausmann, C. Cremer: Localization microscopy reveals expression dependent parameters of chromatin nanostructure, Biophys. J. 99, 1358–1367 (2010)

    Article  ADS  Google Scholar 

  122. C. Cremer, R. Kaufmann, M. Gunkel, S. Pres, Y. Weiland, P. Müller, T. Ruckelshausen, P. Lemmer, F. Geiger, S. Degenhard, C. Wege, N.A.W. Lemmermann, R. Holtappels, H. Strickfaden, M. Hausmann: Superresolution imaging of biological nanostructures by spectral precision distance microscopy, Biotechnol. J. 6, 1037–1051 (2011)

    Article  Google Scholar 

  123. Y. Weiland, P. Lemmer, C. Cremer: Combining FISH with localisation microscopy: Super-resolution imaging of nuclear genome nanostructures, Chromosome Res. 19, 5–23 (2011)

    Article  Google Scholar 

  124. P. Edelmann, C. Cremer: Improvement of confocal spectral precision distance microscopy (SPDM), Optical Diagnostics of Living Cells III., Vol. 3921, ed. by D.L. Farkas, R.C. Leif (SPIE 2000) pp. 313–320

    Google Scholar 

  125. G. Schneider, P.G. Guttmann, S. Heim, S. Rehbein, F. Mueller, K. Nagashima, J.B. Heymann, W.G. Müller, J.G. McNally: Three-dimensional cellular ultrastructure resolved by X-ray microscopy, Nat. Methods 7, 985–987 (2010)

    Article  Google Scholar 

  126. C.H. Eskiw, A. Rapp, D.R. Carter, P.R. Cook: RNA polymerase II activity is located on the surface of protein-rich transcription factories, J. Cell Sci. 121, 1999–2007 (2008)

    Article  Google Scholar 

  127. T. Ach, G. Best, M. Ruppenstein, R. Amberger, C. Cremer, S. Dithmar: Hochauflösende Fluoreszenzmikroskopie des retinalen Pigmentepithels mittels strukturierter Beleuchtung, Ophthalmologe 107, 1037–1042 (2010)

    Article  Google Scholar 

  128. A.L. Grab: In situ Nachweis von Proteinadsorptionsprozessen mittels kombinierter Schwingquarzmikrowägung und Plasmonenresonanz sowie Detektion einzelner Alexa-Moleküle mit SPDM, Diploma Thesis Physics (Univ. Heidelberg, Heidelberg 2011), in German

    Google Scholar 

  129. S. Pres: Aufbau und Kalibrierung eines Zweifarbenlokalisationsmikroskops, Bachelor Thesis Physics (Univ. Heidelberg, Heidelberg 2010), in German

    Google Scholar 

  130. M.F. Juette, T.J. Gould, M.D. Lessard, M.J. Mlodzianoski, B.S. Nagpure, B.T. Bennett, S.T. Hess, J. Bewersdorf: Three-dimensional sub-100 nm Resolution Fluorescence Microscopy of Thick Samples, Nat. Methods 5(6), 527–529 (2008)

    Article  Google Scholar 

  131. J. Rouquette, C. Cremer, T. Cremer, S. Fakan: Functional nuclear architecture studied by microscopy: State of research and perspectives, Int. Rev. Cell. Mol. Biol. 282, 1–90 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Cremer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this chapter

Cite this chapter

Cremer, C. (2012). Optics Far Beyond the Diffraction Limit. In: Träger, F. (eds) Springer Handbook of Lasers and Optics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19409-2_20

Download citation

Publish with us

Policies and ethics