Skip to main content
Log in

Flexible Humidity Sensitive Fiber with Swellable Metal–Organic Frameworks

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Humidity sensors have become an essential need for improving daily life quality. Here, a novel humidity sensitive fiber was fabricated using the soft polydimethylsiloxane (PDMS) as the core layer and the non-swellable polyvinylidenedifluoride (PVDF) embedded with a swellable MIL-88A as the outer layer. Noticeably, the PDMS fiber was chosen as a carrier due to its smoothness, softness and good tensile properties. The isoreticular FeIII dicarboxylate MIL-88 family with swellable metal–organic frameworks (MOFs) can undergo reversible dynamic structural transformations with a response to external humidity change. The resulted fiber with swellable MOFs showed three kinds of deformation for a single solvent and also had good deformation performance for two-component miscible solution with different volume ratios. As a proof of concept, a shape-memory effect at relative humidity from 10 to 90% and the simulated salt solutions instead of relative humidity changes were used to evaluate humidity change. In addition, a deep insight into the self-shape-change mechanism among those phenomena was investigated, wherein expansion deformation of the PDMS fiber as well as the structural transformation of the MIL-88A worked in different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang Y, Wu L, Wang X, Yu J, Ding B. Super hygroscopic nanofibrous membrane-based moisture pump for solar-driven indoor dehumidification. Nat Commun. 2020;11:3302.

    Article  CAS  Google Scholar 

  2. Zhao Q, Yuan Z, Duan Z, Jiang Y, Li X, Li Z, Tai H. An ingenious strategy for improving humidity sensing properties of multi-walled carbon nanotubes via poly-L-lysine modification. Sens Actuat B. 2019;289:182.

    Article  CAS  Google Scholar 

  3. Lin S, Wang Z, Chen X, Ren J, Ling S. Ultrastrong and highly sensitive fiber microactuators constructed by force-reeled silks. Adv Sci. 2020;7:1902743.

    Article  CAS  Google Scholar 

  4. Oliveira H, Oliveira M, Oliveira E, Maciel G, Rakov N. Carbon dots-doped electrospun fibers for simultaneous metal ion detection and adsorption of dyes. Adv Fiber Mater. 2020. https://doi.org/10.1007/s42765-020-00055-7.

    Article  Google Scholar 

  5. Duan Z, Zhao Q, Wang S, Yuan Z, Zhang Y, Li X, Wu Y, Jiang Y, Tai H. Novel application of attapulgite on high performance and low-cost humidity sensors. Sens Actuat B. 2020;305:127534.

    Article  CAS  Google Scholar 

  6. Chen Z, Lu C. Humidity sensors: a review of materials and mechanisms. Sens Lett. 2005;3:274–95.

    Article  CAS  Google Scholar 

  7. Park Y, Chen X. Water-responsive materials for sustainable energy applications. J Mater Chem A. 2020;8:15227.

    Article  CAS  Google Scholar 

  8. Mellot-Draznieks C, Serre C, Surblé S, Audebrand N, Férey G. Very large swelling in hybrid frameworks: a combined computational and powder diffraction study. J Am Chem Soc. 2005;127:16273.

    Article  CAS  Google Scholar 

  9. Serre C, Millange F, Surble S, Ferey G. A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units. Angew Chem Int Ed Engl. 2004;43:6285.

    Article  Google Scholar 

  10. Chalati T, Horcajada P, Gref R, Couvreur P, Serre C. Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. J Mater Chem. 2011;21:2220.

    Article  CAS  Google Scholar 

  11. Surblé S, Serre C, Mellot-Draznieks C, Millange F, Férey G. A new isoreticular class of metal-organic-frameworks with the MIL-88 topology. Chem Commun. 2006. https://doi.org/10.1039/B512169H.

    Article  Google Scholar 

  12. Troyano J, Carné-Sánchez A, Pérez-Carvajal J, León-Reina L, Imaz I, Cabeza A, Maspoch D. A self-folding polymer film based on swelling metal-organic frameworks. Angew Chem Int Ed. 2018;57:15420.

    Article  CAS  Google Scholar 

  13. Troyano J, Carné-Sánchez A, Maspoch D. Programmable self-assembling 3D architectures generated by patterning of swellable MOF-based composite films. Adv Mater. 2019;31:1808235.

    Article  Google Scholar 

  14. Shi R, Lou Z, Chen S, Shen G. Flexible and transparent capacitive pressure sensor with patterned microstructured composite rubber dielectric for wearable touch keyboard application. Sci China Mater. 2018;61:1587.

    Article  CAS  Google Scholar 

  15. Pang D, Wang C-C, Wang P, Liu W, Fu H, Zhao C. Superior removal of inorganic and organic arsenic pollutants from water with MIL-88A(Fe) decorated on cotton fibers. Chemosphere. 2020;254:126829.

    Article  CAS  Google Scholar 

  16. Huang T, Zhu Y, Zhu J, Yu H, Zhang Q, Zhu M. Self-reinforcement of light, temperature-resistant silica nanofibrous aerogels with tunable mechanical properties. Adv Fiber Mater. 2020;2:338–47.

    Article  Google Scholar 

  17. Bagherzadeh E, Zebarjad SM, Hosseini HRM. Morphology modification of the iron fumarate MIL-88A metal-organic framework using formic acid and acetic acid as modulators. Eur J Inorg Chem. 1909;2018:2018.

    Google Scholar 

  18. Bagherzadeh E, Zebarjad SM, Hosseini HRM, Chagnon P. Preparation, optimization and evolution of the kinetic mechanism of an Fe-MIL-88A metal-organic framework. Cryst Eng Commun. 2019;21:544.

    Article  CAS  Google Scholar 

  19. Kim D, Lee G, Oh S, Oh M. Unbalanced MOF-on-MOF growth for the production of a lopsided core-shell of MIL-88B@MIL-88A with mismatched cell parameters. Chem Commun. 2019;55:43.

    Article  CAS  Google Scholar 

  20. Wang JM, Wan JQ, Ma YW, Wang Y, Pu MJ, Guan ZY. Metal-organic frameworks MIL-88A with suitable synthesis conditions and optimal dosage for effective catalytic degradation of Orange G through persulfate activation. Rsc Adv. 2016;6:112502.

    Article  CAS  Google Scholar 

  21. Hirschle P, Hirschle C, Böll K, Döblinger M, Höhn M, Tuffnell JM, Ashling CW, Keen DA, Bennett TD, Rädler JO, Wagner E, Peller M, Lächelt U, Wuttke S. Tuning the morphological appearance of iron(III) fumarate: impact on material characteristics and biocompatibility. Chem Mater. 2020;32:2253.

    Article  CAS  Google Scholar 

  22. Li X, Chen W, Qian Q, Huang H, Chen Y, Wang Z, Chen Q, Yang J, Li J, Mai YW. Electrospinning-based strategies for battery materials. Adv Energy Mater. 2020. https://doi.org/10.1002/aenm.202000845.

    Article  Google Scholar 

  23. Liao X, Wang F, Wang F, Cai Y, Yao Y, Teng B-T, Qinglan H, Shuxiang L. Synthesis of (100) surface oriented MIL-88A-Fe with rod-like structure and its enhanced Fenton-like performance for phenol removal. Appl Catal B. 2019;259:118064.

    Article  CAS  Google Scholar 

  24. Zhao X, Niu G, Yang H, Ma J, Sun M, Xu M, Xiong W, Yang T, Chen L, Wang C. MIL-88A@polyoxometalate microrods as an advanced anode for high-performance lithium ion batteries. Cryst Eng Comm. 2020;22:3588.

    Article  CAS  Google Scholar 

  25. Chen Y, Wang Z, Li X, Yao X, Wang C, Li Y, Xue W, Yu D, Kim SY, Yang F, Kushima A, Zhang G, Huang H, Wu N, Mai YW, Goodenough J, Li J. Li metal deposition and stripping in a solid-state battery via Coble creep. Nature. 2020;578:1.

    Article  Google Scholar 

  26. Rivero PJ, Urrutia A, Goicoechea J, Arregui FJ. Optical fiber humidity sensors based on Localized Surface Plasmon Resonance (LSPR) and Lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles. Sens Actuat B. 2012;173:244.

    Article  CAS  Google Scholar 

  27. Dai J, Zhao H, Lin X, Liu S, Liu Y, Liu X, Fei T, Zhang T. Ultrafast response polyelectrolyte humidity sensor for respiration monitoring. ACS Appl Mater Interfaces. 2019;11:6483.

    Article  CAS  Google Scholar 

  28. Jia T, Wang Y, Dou Y, Li Y, Jung de Andrade M, Wang R, Fang S, Li J, Yu Z, Qiao R, Liu Z, Cheng Y, Su Y, Minary-Jolandan M, Baughman RH, Qian D, Liu Z. Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles. Adv Funct Mater. 2019;29:1808241.

    Article  Google Scholar 

  29. Yang C, Zhang H, Liu Y, Yu Z, Wei X, Hu Y. Kirigami-inspired deformable 3D structures conformable to curved biological surface. Adv Sci. 2018;5:1801070.

    Article  Google Scholar 

  30. Wang J, Liu Y, Cheng Z, Xie Z, Yin L, Wang W, Song Y, Zhang H, Wang Y, Fan Z. Highly conductive MXene film actuator based on moisture gradients. Angew Chem Int Ed. 2020;59:14029.

    Article  CAS  Google Scholar 

  31. Serre C, Mellot-Draznieks C, Surblé S, Audebrand N, Filinchuk Y, Férey G. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science. 2007;315:1828.

    Article  CAS  Google Scholar 

  32. Rozicka A, Niemistö J, Keiski RL, Kujawski W. Apparent and intrinsic properties of commercial PDMS based membranes in pervaporative removal of acetone, butanol and ethanol from binary aqueous mixtures. J Membr Sci. 2014;453:108.

    Article  CAS  Google Scholar 

  33. Dangla R, Gallaire F, Baroud C. Microchannel deformations due to solvent-induced PDMS swelling. Lab Chip. 2010;10:2972.

    Article  CAS  Google Scholar 

  34. Mays R, Dickey M, Genzer J. Microfluidic channels fabricated from poly(vinylmethylsiloxane) networks that resist swelling by organic solvents. Lab Chip. 2013;13:4317.

    Article  CAS  Google Scholar 

  35. Lee J, Park C, Whitesides G. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem. 2004;75:6544.

    Article  Google Scholar 

  36. Rumens C, Ziai M, Belsey K, Batchelor J, Holder S. Swelling of PDMS networks in solvent vapours; applications for passive RFID wireless sensors. J Mater Chem C. 2015;3:10091–8.

    Article  CAS  Google Scholar 

  37. Lee J, Kim M, Lee H. Surface modification of poly(dimethylsiloxane) for retarding swelling in organic solvents. Langmuir. 2006;22:2090.

    Article  CAS  Google Scholar 

  38. Hu Y, Chen X, Whitesides G, Vlassak J, Suo Z. Indentation of polydimethylsiloxane submerged in organic solvents. J Mate Res. 2011;26:785–95.

    Article  CAS  Google Scholar 

  39. Rajitha G, Dash RK. Optically transparent and high dielectric constant reduced graphene oxide (RGO)-PDMS based flexible composite for wearable and flexible sensors. Sens Actuat A. 2018;277:26.

    Article  CAS  Google Scholar 

  40. Dollase T, Spiess HW, Gottlieb M, Yerushalmi-Rozen R. Crystallization of PDMS: the effect of physical and chemical crosslinks. Europhys Lett (EPL). 2002;60:390.

    Article  CAS  Google Scholar 

  41. Chou C, Yang M-H. Structural effects on the thermal properties of PDPS/PDMS copolymers. J Therm Anal Calorim. 1993;40:657.

    Article  CAS  Google Scholar 

  42. Park C-S, Joo K-I, Kang S-W, Kim H-R. A PDMS-coated optical fiber bragg grating sensor for enhancing temperature sensitivity. J Opt Soc Korea. 2011;15:329.

    Article  CAS  Google Scholar 

  43. Raisch M, Genovese D, Zaccheroni N, Schmidt SB, Focarete ML, Sommer M, Gualandi C. Highly sensitive, anisotropic, and reversible stress/strain-sensors from mechanochromic nanofiber composites. Adv Mater. 2018;30:1802813.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from Zhejiang Top Priority Discipline of Textile Science and Engineering, Natural Science Foundation of Zhejiang Province (No. LY13B030009), Science Foundation of Zhejiang Sci-Tech University (ZSTU) (No. 1101820-Y).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junmin Wan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, S., Shuai, L., Ding, W. et al. Flexible Humidity Sensitive Fiber with Swellable Metal–Organic Frameworks. Adv. Fiber Mater. 3, 107–116 (2021). https://doi.org/10.1007/s42765-021-00064-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00064-0

Keywords

Navigation