Skip to main content
Log in

Utilizing Multilayer Design of Organic-Inorganic Hybrids to Enhance Wearable Strain Sensor in Humid Environment

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Flexible strain wearable sensors have attracted considerable attention due to their advantages of low cost, lightweight, high sensitivity and good flexibility. However, the strain sensors are easy to be damaged in an extreme humidity environment or by the wearer’s sweat in the process of use, resulting in detection disorder or even a short circuit. Furthermore, preparation of sensors with stable properties under extreme environments is one of the most important research directions. To fill this gap, a flexible sensor was prepared by using polyurethane and carbon nanotubes, then modified by polydopamine and 1H,1H,2H,2H-perfluorodecane-mercaptan. A typical tunnel model was used to explain the working mechanism of the sensor, the sensitivity of the sensor is also explained and evaluated by the tunneling theory. The results show that the sensor has good sensitivity (the sensor has a stable sensing signal output under a strain range from 2% to 300%) and stability over 8500 cycles. At the same time, the sensor has good superhydrophobicity, the water contact angle reaches 152°, and it is still stable in a humid environment. Moreover, this sensor shows excellent performance in monitoring human joint motion (such as finger, elbow, wrist and knee) and physiological signals (such as speaking and drinking). This work provides an effective design method for the sensor which can be applied in a high humidity environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meng, K. Y.; Xiao, X.; Wei, W. X.; Chen, G. R.; Nashalian, A.; Shen, S.; Xiao, X.; Chen, J. Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 2022, 34, e2109357.

    PubMed  Google Scholar 

  2. Khalid, M. A. U.; Chang, S. H. Flexible strain sensors for wearable applications fabricated using novel functional nanocomposites: a review. Compos. Struct. 2022, 284, 115214.

    CAS  Google Scholar 

  3. Liu, Y. H.; Pharr, M.; Salvatore, G. A. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 2017, 11, 9614–9635.

    CAS  PubMed  Google Scholar 

  4. Gao, W. C.; Wu, W.; Chen, C. Z.; Zhao, H.; Liu, Y.; Li, Q.; Huang, C. X.; Hu, G. H.; Wang, S. F.; Shi, D.; Zhang, Q. C. Design of a superhydrophobic strain sensor with a multilayer structure for human motion monitoring. ACS Appl. Mater. Interfaces 2022, 14, 1874–1884.

    CAS  PubMed  Google Scholar 

  5. Chen, J. W.; Yu, Q. L.; Cui, X. H.; Dong, M. Y.; Zhang, J. X.; Wang, C.; Fan, J. C.; Zhu, Y. T.; Guo, Z. H. An overview of stretchable strain sensors from conductive polymer nanocomposites. J. Mater. Chem. C 2019, 7, 11710–11730.

    CAS  Google Scholar 

  6. Li, Z. Y.; Zhai, W.; Yu, Y. F.; Li, G. J.; Zhan, P. F.; Xu, J. W.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. An ultrasensitive, durable and stretchable strain sensor with crack-wrinkle structure for human motion monitoring. Chinese J. Polym. Sci. 2021, 39, 316–326.

    CAS  Google Scholar 

  7. Jia, S. S.; Deng, S. L.; Qing, Y.; He, G. J.; Deng, X. H.; Luo, S.; Wu, Y. Q.; Guo, J.; Carmalt, C. J.; Lu, Y.; Parkin, I. P. A coating-free superhydrophobic sensing material for full-range human motion and microliter droplet impact detection. Chem. Eng. J. 2021, 410, 128418.

    CAS  Google Scholar 

  8. Cai, Y. C.; Shen, J.; Ge, G.; Zhang, Y. Z.; Jin, W. Q.; Huang, W.; Shao, J. J.; Yang, J.; Dong, X. C. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 2018, 12, 56–62.

    CAS  PubMed  Google Scholar 

  9. Pan, Q.; Tong, N. J.; He, N. F.; Liu, Y. X.; Shim, E.; Pourdeyhimi, B. P.; Gao, W. Electrospun Mat of poly(vinyl alcohol)/graphene oxide for superior electrolyte performance. ACS Appl. Mater. Interfaces 2018, 10, 7927–7934.

    CAS  PubMed  Google Scholar 

  10. Wang, L.; Chen, Y.; Lin, L. W.; Wang, H.; Huang, X. W.; Xue, H. G.; Gao, J. F. Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite. Chem. Eng. J. 2019, 362, 89–98.

    CAS  Google Scholar 

  11. Liu, Y.; Wang, H.; Zhao, W.; Zhang, M.; Qin, H. B.; Xie, Y. Q. Flexible, stretchable sensors for wearable health monitoring: sensing mechanisms, materials, fabrication strategies and features. Sensors 2018, 18, 645.

    PubMed  PubMed Central  Google Scholar 

  12. Liu, H.; Li, Q. M.; Zhang, S. D.; Yin, R.; Liu, X. H.; He, Y. X.; Dai, K.; Shan, C. X.; Guo, J.; Liu, C. T.; Shen, C. Y.; Wang, X. J.; Wang, N.; Wang, Z. C.; Wei, R. B.; Guo, Z. H. Electrically conductive polymer composites for smart flexible strain sensors: a critical review. J. Mater. Chem. C 2018, 6, 12121–12141.

    CAS  Google Scholar 

  13. Wang, Y. L.; Hao, J.; Huang, Z. Q.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon 2018, 126, 360–371.

    CAS  Google Scholar 

  14. Trung, T. Q.; Duy, L. T.; Ramasundaram, S.; Lee, N. E. Transparent, stretchable, and rapid-response humidity sensor for body-attachable wearable electronics. Nano Res. 2017, 10, 2021–2033.

    CAS  Google Scholar 

  15. Li, Y. H.; Zhou, B.; Zheng, G. Q.; Liu, X. H.; Li, T. X.; Yan, C.; Cheng, C. B.; Dai, K.; Liu, C. T.; Shen, C. Y.; Guo, Z. H. Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing. J. Mater. Chem. C 2018, 6, 2258–2269.

    CAS  Google Scholar 

  16. Sahoo, B. N.; Woo, J. H.; Algadi, H.; Lee, J. H.; Lee, T. Superhydrophobic, transparent, and stretchable 3D hierarchical wrinkled film-based sensors for wearable applications. Adv. Mater. Technol. 2019, 4, 1900230.

    CAS  Google Scholar 

  17. Fan, T.; Xue, S. S.; Zhu, W. B.; Zhang, Y. Y.; Li, Y. Q.; Chen, Z. K.; Huang, P.; Fu, S. Y. Multifunctional polyurethane composite foam with outstanding anti-impact capacity for soft body armors. ACS Appl. Mater. Interfaces 2022, 14, 13778–13789.

    CAS  PubMed  Google Scholar 

  18. Ma, W. J.; Jiang, Z. C.; Lu, T.; Xiong, R. H.; Huang, C. B. Lightweight, elastic and superhydrophobic multifunctional nanofibrous aerogel for self-cleaning, oil/water separation and pressure sensing. Chem. Eng. J. 2022, 430.

  19. Park, C.; Kim, T.; Samuel, E. P.; Kim, Y.-I.; An, S.; Yoon, S. S. Superhydrophobic antibacterial wearable metallized fabric as supercapacitor, multifunctional sensors, and heater. J. Power Sources 2021, 506, 230142.

    CAS  Google Scholar 

  20. Wang, L.; Huang, X. W.; Wang, D.; Zhang, W. M.; Gao, S. J.; Luo, J. C.; Guo, Z.; Xue, H. G.; Gao, J. F. Lotus leaf inspired superhydrophobic rubber composites for temperature stable piezoresistive sensors with ultrahigh compressibility and linear working range. Chem. Eng. J. 2021, 405, 127025.

    CAS  Google Scholar 

  21. Li, Z. X.; Ye, L. J.; Shen, J. Q.; Xie, K. Y.; Li, Y. J. Strain-gauge sensoring composite films with self-restoring water-repellent properties for monitoring human movements. Compos. Commun. 2018, 7, 23–29.

    Google Scholar 

  22. Zhang, K. M.; Wang, Z.; Liu, Y. T.; Zhao, H. Y.; Gao, C. H.; Wu, Y. M. Cephalopods-inspired repairable MWCNTs/PDMS conductive elastomers for sensitive strain sensor. Chinese J. Polym. Sci. 2022, 40, 384–393.

    CAS  Google Scholar 

  23. Wang, J. J.; Zhang, Q.; Ji, X. X.; Liu, L. B. Highly stretchable, compressible, adhesive, conductive self-healing composite hydrogels with sensor capacity. Chinese J. Polym. Sci. 2020, 38, 1221–1229.

    CAS  Google Scholar 

  24. Guo, Y.; Zhong, M. J.; Fang, Z. W.; Wan, P. B.; Yu, G. H. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano lett. 2019, 19, 1143–1150.

    PubMed  Google Scholar 

  25. Wei, Y.; Chen, S.; Yuan, X.; Wang, P. P.; Liu, L. Multiscale wrinkled microstructures for piezoresistive fibers. Adv. Funct. Mater. 2016, 26, 5078–5085.

    CAS  Google Scholar 

  26. Liao, X. Q.; Liao, Q. L.; Zhang, Z.; Yan, X. Q.; Liang, Q. J.; Wang, Q. Y.; Li, M. H.; Zhang, Y. A highly stretchable ZnO@fiber-based multifunctional nanosensor for strain/temperature/UV detection. Adv. Funct. Mater. 2016, 26, 3074–3081.

    CAS  Google Scholar 

  27. Li, G. J.; Dai, K.; Ren, M. N.; Wang, Y.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y. Aligned flexible conductive fibrous networks for highly sensitive, ultrastretchable and wearable strain sensors. J. Mater. Chem. C 2018, 6, 6575–6583.

    CAS  Google Scholar 

  28. Zhou, X.; Zhu, L.; Fan, L.; Deng, H.; Fu, Q. Fabrication of highly stretchable, washable, wearable, water-repellent strain sensors with multi-stimuli sensing ability. ACS Appl. Mater. Interfaces 2018, 10, 31655–31663.

    CAS  PubMed  Google Scholar 

  29. Liu, K.; Yang, C.; Song, L. H.; Wang, Y.; Wei, Q.; Alamusi; Deng, Q.; Hu, N. Highly stretchable, superhydrophobic and wearable strain sensors based on the laser-irradiated PDMS/CNT composite. Compos. Sci. Technol. 2022, 218, 18954.

    Google Scholar 

  30. Yu, X. G.; Li, Y. Q.; Zhu, W. B.; Huang, P.; Wang, T. T.; Hu, N.; Fu S. Y. A wearable strain sensor based on a carbonized nanosponge/silicone composite for human motion detection. Nanoscale 2017, 9, 6680–6685.

    CAS  PubMed  Google Scholar 

  31. Tadakaluru, S.; Thongsuwan, W.; Singjai, P. Stretchable and flexible high-strain sensors made using carbon nanotubes and graphite films on natural rubber. Sensors 2014, 14, 868–876.

    PubMed  PubMed Central  Google Scholar 

  32. Wang, Y. L.; Jia, Y. Y.; Zhou, Y. J.; Wang, Y.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. Ultra-stretchable, sensitive and durable strain sensors based on polydopamine encapsulated carbon nanotubes/elastic bands. J. Mater. Chem. C 2018, 6, 8160–8170.

    CAS  Google Scholar 

  33. Zhang, M. C.; Wang, C. Y.; Wang, H. M.; Jian, M. Q.; Hao, X. Y.; Zhang, Y. Y. Carbonized cotton fabric for high-performance wearable strain sensors. Adv. Funct. Mater. 2018, 27, 1604795.

    Google Scholar 

  34. Wang, N.; Xu, Z. Y.; Zhan, P. F.; Dai, K.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y. A tunable strain sensor based on a carbon nanotubes/electrospun polyamide 6 conductive nanofibrous network embedded into poly(vinyl alcohol) with self-diagnosis capabilities. J. Mater. Chem. C 2017, 5, 4408–4418.

    CAS  Google Scholar 

  35. Guan, X. Y.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Yan, X. R.; Shen, C. Y.; Guo, Z. H. Carbon nanotubes-adsorbed electrospun PA66 nanofiber bundles with improved conductivity and robust flexibility. ACS Appl. Mater. Interfaces 2016, 8, 14150–14159.

    CAS  PubMed  Google Scholar 

  36. Zhan, P. F.; Zhai, W.; Wei, W. Y.; Ding, P.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. Stretchable strain sensor with high sensitivity, large workable range and excellent breathability for wearable electronic skins. Compos. Sci. Technol. 2022, https://doi.org/10.1016/j.compscitech.2022.109720.

  37. Seyedin, S.; Uzun, S.; Levitt, A.; Anasori, B.; Dion, G.; Gogotsi, Y.; Razal, J. M. MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles. Adv. Funct. Mater. 2020, 30, 1910504.

    CAS  Google Scholar 

  38. Li, B.; Luo, J. C.; Huang, X. W.; Lin, L. W.; Wang, L.; Hu, M. J.; Tang, L. C.; Xue, H. G.; Gao, J. F.; Mai, Y.-W. A highly stretchable, super-hydrophobic strain sensor based on polydopamine and graphene reinforced nanofiber composite for human motion monitoring. Compos. Part B: Eng. 2020, 181, 107580.

    CAS  Google Scholar 

  39. Gao, J. F.; Wang, H.; Huang, X. W.; Hu, M. J.; Xue, H. J.; Li, R.K.Y. Electrically conductive polymer nanofiber composite with an ultralow percolation threshold for chemical vapour sensing. Compos. Sci. Technol. 2018, 161, 135–142.

    CAS  Google Scholar 

  40. Huang, X. W.; Li, B.; Wang, L.; Lai, X. J.; Xue, H. G.; Gao, J. F. Superhydrophilic, underwater superoleophobic, and highly stretchable humidity and chemical vapor sensors for human breath detection. ACS Appl. Mater. Interfaces 2019, 11, 24533–24543.

    CAS  PubMed  Google Scholar 

  41. Cao, N.; Yang, B.; Barras, A.; Szunerits, S.; Boukherroub, R. Polyurethane sponge functionalized with superhydrophobic nanodiamond particles for efficient oil/water separation. Chem. Eng. J. 2017, 307, 319–325.

    CAS  Google Scholar 

  42. Cheng, B. X.; Lu, C. C.; Li, Q.; Zhao, S. Q.; Bi, C. S.; Wu, W.; Huang, C. X.; Zhao, H. Preparation and properties of self-healing triboelectric nanogenerator based on waterborne polyurethane containing diels-alder bonds. J. Polym. Environ. 2022, DOI: https://doi.org/10.1007/s10924-022-02586-z.

  43. Moya, A.; Kemnade, N.; Osorio, M.R.; Cherevan, A.; Granados, D.; Eder, D.; Vilatela, J. J. Large area photoelectrodes based on hybrids of CNT fibres and ALD-grown TiO2. J. Mater. Chem. A 2017, 5, 24695–24706.

    CAS  Google Scholar 

  44. Gao, J. F.; Wang, L.; Guo, Z.; Li, B.; Wang, H.; Luo, J. C.; Huang, X. W.; Xue, H. G. Flexible, superhydrophobic, and electrically conductive polymer nanofiber composite for multifunctional sensing applications. Chem. Eng. J. 2020, 381, 122778.

    Google Scholar 

  45. Barick, A. K.; Tripathy, D. K. Preparation, characterization and properties of acid functionalized multi-walled carbon nanotube reinforced thermoplastic polyurethane nanocomposites. Mater. Sci. Eng. B 2011, 176, 1435–1447.

    CAS  Google Scholar 

  46. Li, L. X.; Zhang, J. P. Superamphiphobic, magnetic, and elastic silicone sponges with excellent temperature stability. Adv. Mater. Interfaces 2016, 3, 1600517.

    Google Scholar 

  47. Liu, M. Y.; Zhou, J. F.; Yang, Y.; Zheng, M.; Yang, J. J.; Tan, J. G. Surface modification of zirconia with polydopamine to enhance fibroblast response and decrease bacterial activity in vitro: a potential technique for soft tissue engineering applications. Colloids Surf B Biointerfaces 2015, 136, 74–83.

    CAS  PubMed  Google Scholar 

  48. Zhao, H.; Li, K. C.; Wu, W.; Li, Q.; Jiang, Y.; Cheng, B. X.; Huang, C. X.; Li, H. N. Microstructure and viscoelastic behavior of waterborne polyurethane/cellulose nanofiber nanocomposite. J. Ind. Eng. Chem. 2022, 110, 150–157.

    CAS  Google Scholar 

  49. Yan, Y. Y.; Gao, N.; Barthlott, W. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Adv. Colloid Interface Sci. 2011, 169, 80–105.

    CAS  PubMed  Google Scholar 

  50. Zhao, H.; Gao, W. C.; Li Q.; Khan, M. R.; Hu, G. H.; Liu, Y.; Wu, W.; Huang, C. X.; Li, R.K.Y. Recent advances in superhydrophobic polyurethane: preparations and applications. Adv. Colloid Interface Sci. 2022, 303, 102644.

    CAS  PubMed  Google Scholar 

  51. Li, Q. M.; Liu, H.; Zhang, S. D.; Zhang, D. B. H.; Liu, X. H.; He, Y. X.; Mi, L. W.; Zhang, J. X.; Liu, C. T.; Shen, C. Y.; Guo, Z. H. Superhydrophobic electrically conductive paper for ultrasensitive strain sensor with excellent anticorrosion and self-cleaning property. ACS Appl. Mater. Interfaces 2019, 11, 21904–21914.

    CAS  PubMed  Google Scholar 

  52. Wang, Z. F.; Huang, Y.; Sun J. F.; Huang, Y.; Hu, H.; Jiang, R. J.; Gai, W. M.; Li, G. M.; Zhi, C. Y. Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection. ACS Appl. Mater. Interfaces 2016, 8, 24837–24843.

    CAS  PubMed  Google Scholar 

  53. Du, Y. Z.; Yu, G. X.; Dai, X. Y.; Wang, X. D.; Yao, B.; Kong, J. Highly stretchable, self-healable, ultrasensitive strain and proximity sensors based on skin-inspired conductive film for human motion Monitoring. ACS Appl. Mater. Interfaces 2020, 12, 51987–51998.

    CAS  PubMed  Google Scholar 

  54. Wang, X.; Liu, X. H.; Schubert, D. W. Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks. Nanomicro Lett. 2021, 13, 159–177.

    PubMed  PubMed Central  Google Scholar 

  55. Zhang, X. W.; Pan, Y.; Zheng, Q.; Yi, X. S. Time dependence of piezoresistance for the conductor-filled polymer composites. polymer physics 2000, 38, 2739–2749.

    CAS  Google Scholar 

  56. Huang, J. Y.; Li, D.W.; Zhao, M.; Mensah, A.; Lv, P. F.; Tian, X. J.; Huang, F. L.; Ke, H. Z.; Wei, Q. F. Highly sensitive and stretchable CNT-bridged AgNP strain sensor based on TPU electrospun membrane for human motion detection. Adv. Electron. Mater. 2011, 5, 1900241.

    Google Scholar 

  57. Zhao, S. G.; Lou, D. D.; Li, G. J.; Zheng, Y. J.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Jiang, Y. L.; Shen, C. Y. Bridging the segregated structure in conductive polypropylene composites: an effective strategy to balance the sensitivity and stability of strain sensing performances. Compos. Sci. Technol. 2018, 163, 18–25.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 22268009), Guangxi Natural Science Foundation Program (No. 2020GXNSFBA159023), Opening Project of Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization (No. HZXYKFKT202204), Open Funding Project of the State Key Laboratory of Biocatalysis and Enzyme Engineering (No. SKLBEE2020009)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhao.

Ethics declarations

The authors declare no interest conflict.

Electronic supplementary material

Supplementary material, approximately 19.4 MB.

Supplementary material, approximately 19.0 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, CC., Gao, WC., Li, P. et al. Utilizing Multilayer Design of Organic-Inorganic Hybrids to Enhance Wearable Strain Sensor in Humid Environment. Chin J Polym Sci 41, 1037–1050 (2023). https://doi.org/10.1007/s10118-023-2905-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2905-7

Keywords

Navigation