Skip to main content
Log in

Carbon Dots-Doped Electrospun Fibers for Simultaneous Metal Ion Detection and Adsorption of Dyes

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

The required treatment and monitoring of contaminants in wastewater reinforces the development of low-cost adsorbents/chemosensors, introducing advantages relative to the detection/removal of toxic metals and dyes. Herein, it is reported a two-step process of fabrication of fluorescent carbon dots via the hydrothermal treatment of amino acids for the following encapsulation in electrospun fibers. The prominent anionic behavior of electrospun fibers of Eudragit L100 was explored for adsorption of cationic dyes (methylene blue and crystal violet)—with the prevailing electrostatic interaction of parts being favored by the formation of monolayers on the surface of adsorbents. On the other hand, the controlled release of carbon dots (CDs) from fibers to the reactor can be explored for a second application: the nitrogen ligands from released glycine-based carbon dots can be explored to indicate the presence of metal ions in aqueous solution. Our experiment resulted in a quenching in the fluorescence of the CDs in order of 90% in the emission of particles in the response of the presence of Fe3+ ions, characterizing a promising perspective for this experimental system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Akram MA, Ye J, Wang G, Shi L, Liu Z, Lu H, et al. Bifunctional chemosensor based on a dye-encapsulated metal-organic framework for highly selective and sensitive detection of Cr2O72− and Fe3+ ions. Polyhedron. 2020;185:114604.

    Article  CAS  Google Scholar 

  2. Liu X, Li N, Xu M-M, Wang J, Jiang C, Song G, et al. Specific colorimetric detection of Fe3+ ions in aqueous solution by squaraine-based chemosensor. RSC Adv. 2018;8:34860–6.

    Article  CAS  Google Scholar 

  3. Li Q, Guo Z, Zhao X, Zhang T, Chen J, Wei Y. One-pot synthesis of 2,2′-dipicolylamine derived highly photoluminescent nitrogen-doped carbon quantum dots for Fe3+ detection and fingermark detection. Nanotechnology. 2020;31:335501.

    Article  CAS  Google Scholar 

  4. Candido ICM, Soares JMD, de Araujo Barros Barbosa J, de Oliveira HP. Adsorption and identification of traces of dyes in aqueous solutions using chemically modified eggshell membranes. Bioresour Technol Rep. 2019;7:100267.

  5. Akhtar F, Andersson L, Ogunwumi S, Hedin N, Bergström L. Structuring adsorbents and catalysts by processing of porous powders. J Eur Ceram Soc. 2014;34:1643–66.

    Article  CAS  Google Scholar 

  6. Wang J, Qiu J. A review of carbon dots in biological applications. J Mater Sci. 2016;51:4728–38.

    Article  CAS  Google Scholar 

  7. Khan S, Gupta A, Verma NC, Nandi CK. Time-resolved emission reveals ensemble of emissive states as the origin of multicolor fluorescence in carbon dots. Nano Lett. 2015;15:8300–5.

    Article  CAS  Google Scholar 

  8. Pang L, Ming J, Pan F, Ning X. Fabrication of silk fibroin fluorescent nanofibers via electrospinning. Polymers (Basel). 2019;11:986.

    Article  Google Scholar 

  9. Li L, Li L, Wang C, Liu K, Zhu R, Qiang H, et al. Synthesis of nitrogen-doped and amino acid-functionalized graphene quantum dots from glycine, and their application to the fluorometric determination of ferric ion. Microchim Acta. 2014;182:763–70.

    Article  Google Scholar 

  10. Wang A, Xiao X, Zhou C, Lyu F, Fu L, Wang C, et al. Large-scale synthesis of carbon dots/TiO2 nanocomposites for the photocatalytic color switching system. Nanoscale Adv. 2019;1:1819–25.

    Article  CAS  Google Scholar 

  11. Zhou Y, Zahran EM, Quiroga BA, Perez J, Mintz KJ, Peng Z, et al. Size-dependent photocatalytic activity of carbon dots with surface-state determined photoluminescence. Appl Catal B Environ. 2019;248:157–66.

    Article  CAS  Google Scholar 

  12. Lecroy GE, Messina F, Sciortino A, Bunker CE, Wang P, Fernando KAS, et al. Characteristic excitation wavelength dependence of fluorescence emissions in carbon “quantum” dots. J Phys Chem C. 2017;121:28180–6.

    Article  CAS  Google Scholar 

  13. Yan Z, Yu Y, Chen J. Glycine-functionalized carbon quantum dots as chemiluminescence sensitization for detection of m-phenylenediamine. Anal Methods. 2015;7:1133–9.

    Article  CAS  Google Scholar 

  14. Wang Z, Xu C, Lu Y, Chen X, Yuan H, Wei G, et al. Fluorescence sensor array based on amino acid derived carbon dots for pattern-based detection of toxic metal ions. Sens Actuators B Chem. 2017;241:1324–30.

    Article  CAS  Google Scholar 

  15. Brahatheeswaran D, Mathew A, Aswathy RG, Nagaoka Y, Venugopal K, Yoshida Y, et al. Hybrid fluorescent curcumin loaded zein electrospun nanofibrous scaffold for biomedical applications. Biomed Mater. 2012;7:045001.

    Article  Google Scholar 

  16. de Barbosa JAB, dos Santos MR, de Oliveira HP. Electrospun fibers of copolymers for the removal of ionic dyes: the influence of processing variables. Fibers Polym. 2018;19:94–104.

    Article  CAS  Google Scholar 

  17. Mani S, Bharagava RN. Exposure to crystal violet, its toxic, genotoxic and carcinogenic effects on environment and its degradation and detoxification for environmental safety. Rev Environ Contam Toxicol. 2016;237:71–104.

    CAS  Google Scholar 

  18. Barbosa JdeA, França CA, Gouveia JJS, Gouveia GV, da Costa MM, de Oliveira HP. Eudragit E100/poly(ethylene oxide) electrospun fibers for DNA removal from aqueous solution. J Appl Polym Sci. 2019;2019:474749.

    Google Scholar 

  19. Li J, Ma S, Xiao X, Zhao D. The one-step preparation of green-emissioned carbon dots through hydrothermal route and its application. J Nanomater. 2019;2019:8628354.

    Google Scholar 

  20. Rodrigues CV, Correa JR, Aiube CM, Andrade LP, Galvão PM, Costa PA, et al. Down- and up-conversion photoluminescence of carbon-dots from brewing industry waste: application in live cell-imaging experiments. J Braz Chem Soc. 2015;26:2623–8.

    CAS  Google Scholar 

  21. Jia X, Li J, Wang E. One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale. 2012;4:5572–5.

    Article  CAS  Google Scholar 

  22. Ma Z, Ming H, Huang H, Liu Y, Kang Z. One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. New J Chem. 2012;36:861–4.

    Article  CAS  Google Scholar 

  23. Zhao L, Di F, Wang D, Guo LH, Yang Y, Wan B, et al. Chemiluminescence of carbon dots under strong alkaline solutions: a novel insight into carbon dot optical properties. Nanoscale. 2013;5:2655–8.

    Article  CAS  Google Scholar 

  24. Da Costa FFP, Araújo ES, Nascimento MLF, De Oliveira HP. Electrospun fibers of enteric polymer for controlled drug delivery. Int J Polym Sci. 2015;2015:902365.

    Google Scholar 

  25. Kalytchuk S, Wang Y, Poláková K, Zbořil R. Carbon dot fluorescence-lifetime-encoded anti-counterfeiting. ACS Appl Mater Interfaces. 2018;10:29902–8.

    Article  CAS  Google Scholar 

  26. Kalytchuk S, Poláková K, Wang Y, Froning JP, Cepe K, Rogach AL, et al. Carbon dot nanothermometry: intracellular photoluminescence lifetime thermal sensing. ACS Nano. 2017;11:1432–42.

    Article  CAS  Google Scholar 

  27. Jiang Z, Krysmann MJ, Kelarakis A, Koutnik P, Anzenbacher P, Roland PJ, et al. Understanding the photoluminescence mechanism of carbon dots. MRS Adv. 2017;2:2927–34.

    Article  CAS  Google Scholar 

  28. Gan Z, Xu H, Hao Y. Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges. Nanoscale. 2016;8:7794–807.

    Article  CAS  Google Scholar 

  29. Dekaliuk MO, Viagin O, Malyukin YV, Demchenko AP. Fluorescent carbon nanomaterials: “quantum dots” or nanoclusters? Phys Chem Chem Phys. 2014;16:16075–84.

    Article  CAS  Google Scholar 

  30. Ehrat F, Bhattacharyya S, Schneider J, Löf A, Wyrwich R, Rogach AL, et al. Tracking the source of carbon dot photoluminescence: aromatic domains versus molecular fluorophores. Nano Lett. 2017;17:7710–6.

    Article  CAS  Google Scholar 

  31. Reckmeier CJ, Wang Y, Zboril R, Rogach AL. Influence of doping and temperature on solvatochromic shifts in optical spectra of carbon dots. J Phys Chem C. 2016;120:10591–604.

    Article  CAS  Google Scholar 

  32. Stan CS, Gospei Horlescu P, Ursu LE, Popa M, Albu C. Facile preparation of highly luminescent composites by polymer embedding of carbon dots derived from N-hydroxyphthalimide. J Mater Sci. 2017;52:185–96.

    Article  CAS  Google Scholar 

  33. de Oliveira HP, Albuquerque Jr. JJF, Nogueiras C, Rieumont J. Physical chemistry behavior of enteric polymer in drug release systems. Int J Pharm. 2009;366:185–189.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Brazilian agencies’ FINEP, CAPES, FAPESB, FACEPE, and CNPq. Y. X. acknowledges FAPERJ (Grant numbers E-26/010.000978/2019 and E-26/010.001550/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glauco S. Maciel.

Ethics declarations

Conflict of interest

No conflict of interest exists.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, M.C.A., de L. Oliveira, E.G., Pires, I.C.B. et al. Carbon Dots-Doped Electrospun Fibers for Simultaneous Metal Ion Detection and Adsorption of Dyes. Adv. Fiber Mater. 2, 302–313 (2020). https://doi.org/10.1007/s42765-020-00055-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-020-00055-7

Keywords

Navigation