Skip to main content

Advertisement

Log in

Treatment of Simulated Oil and Gas Produced Water via Pilot-Scale Rhizofiltration and Constructed Wetlands

  • Research Paper
  • Published:
International Journal of Environmental Research Aims and scope Submit manuscript

Abstract

Extraction of petroleum, natural gas and coal bed methane is often accompanied by the release of large volumes of produced water (PW). Untreated PW poses environmental and health risks; however, there are opportunities for beneficial reuse if potentially hazardous constituents are removed. In a hydroponic system, four plant species (cattail, Typha latifolia; sedge, Carex blanda, sunflower, Helianthus annuus; and Indian mustard, Brassica juncea) were assessed for tolerance to, and rhizofiltration of, metals occurring in synthetic PW. In a separate study, cattail and sedge were grown in a pilot-scale constructed wetland containing either soil or peat and tested for the removal of PW metals. After reaction with PW for 10 weeks in the hydroponic system, Indian mustard was the most effective in removal of Na. All species accumulated more metals in roots compared to aboveground shoots. Cattail roots had the highest BCF for Cr (1156), Cu (2911) and Cd (6047). Mustard roots had a high BCF for Cd (3485). Mustard, cattail and sedge all had TF values < 1, indicating their potential as metal excluders for produced water. In the constructed wetlands, cattail shoots were highly effective for the removal of Na and Li (BCF > 100). TF values for most metals were low. Metal removal, as indicated by tissue metal concentration and BCF, was typically much higher using constructed wetlands compared with rhizofiltration. Based on these data, constructed wetlands may serve as a low-cost, environmentally benign method for the treatment of PW. The reported study may be of practical value to oil and gas production industries that plan to recycle or properly dispose large quantities of oil and gas production wastewater.

Article Highlights

  • A pilot-scale constructed wetland and a hydroponic apparatus were used to evaluate the ability of plants for uptake and accumulation of selected metals from simulated produced water.

  • Cattail (Typha latifolia), sedge (Carex blanda), sunflower (Helianthus annuus) and Indian mustard (Brassica juncea) accumulated more metals in roots compared to aboveground shoots.

  • Cattail, sedge and mustard had transfer factors < 1, indicating their potential as metal excluders for produced water.

  • Metal removal by plants, as indicated by tissue metal concentrations and bioconcentration factor, was typically much greater using constructed wetlands compared with rhizofiltration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aini Syuhaida AW, Norkhadijah S, Praveena SM, Suriyani A (2014) The comparison of phytoremediation abilities of water mimosa and water hyacinth. ARPN J Sci Technol 4:722–731

    Google Scholar 

  • Alalade O, Ferguson J, Pichtel J (2017) Treatment of oil and gas production wastewater using Typha latifolia in a pilot-scale constructed wetland. Environ Biotechnol 13(1):1–10

    Article  Google Scholar 

  • Allen SE, Grimshaw MH, Parkinson JA, Quarmby C (1974) Chemical analysis of ecological materials. Blackwell Scientific Publications, Oxford, p 386

    Google Scholar 

  • Aqwatec (2015) Produced Water Beneficial Use Case Studies, Produced Water Treatment and Beneficial Use Information Center, 2015, http://aqwatec.mines.edu/producedwater/assessbu/case/. Accessed 27 Jan 2017

  • Arroyo P, Ansola G, de Luis E (2010) Effectiveness of a full-scale constructed wetland for the removal of metals from domestic wastewater. Water Air Soil Pollut 210:473–481

    Article  CAS  Google Scholar 

  • Bakar AFA, Yusoff I, Fatt NT, Othman F, Ashraf MA (2013) Arsenic, zinc, and aluminium removal from gold mine wastewater effluents and accumulation by submerged aquatic plants (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata). Biomed Res Int. https://doi.org/10.1155/2013/890803

    Article  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Baker AJM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J&C Presl (Brassicaceae). New Phytol 127:61–68

    Article  CAS  Google Scholar 

  • Benko KL, Drewes JE (2008) Produced water in the western United States: geographical distribution, occurrence, and composition. Environ Eng Sci 25(2):239–246

    Article  CAS  Google Scholar 

  • Bergman A, Heindel JJ, Jobling S, Kidd KA, and Zoeller RT (2013) State of the science of endocrine disrupting chemicals. World Health Organization, http://www.who.int/ceh/publications/endocrine/en/. Accessed 1 Aug 2017

  • Black CA (1965) Nitrogen-total. Methods of soil analysis. Chemical and microbiological properties. American Society of Agronomy, Madison

    Google Scholar 

  • Bloomfield C (1981) The translocation of metals in soils. In: Greenland DJ, Hayes MHB (eds) The Chemistry of Soil Processes. Wiley, New York

    Google Scholar 

  • Borkert CM, Cox FR, Tucker M (1998) Zinc and copper toxicity in peanut, soybean, rice, and corn in soil mixtures. Commun Soil Sci Plant Anal 29(19–20):2991–3005

    Article  CAS  Google Scholar 

  • Branquinho C, Serrano HC, Pinto MJ, Martins-Loucao MA (2007) Revisiting the plant hyperaccumulation criteria to rare plants and earth abundant elements. Environ Pollut 14:437–443

    Article  CAS  Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–45

    Article  CAS  Google Scholar 

  • Brisson J, Chazarenc F (2009) Maximizing pollutant removal in constructed wetlands: should we pay more attention to macrophyte species selection? Sci Tot Environ 407:3923–3930

    Article  CAS  Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJM (1994) Phytomediation potential of Thlaspi caerulescens and bladder campion for zinc-and cadmium-contaminated soil. J Environ Qual 23:1151–1157

    Article  CAS  Google Scholar 

  • Burton GA, Scott KJ (1992) Assessing contaminated aquatic sediments. Environ Sci Technol 26:2068–2075

    Article  CAS  Google Scholar 

  • Cervantes C, Campos-Garcı́a J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Carlos Torres-Guzmán JC, Moreno-Sánchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25(3):335–347

    Article  CAS  Google Scholar 

  • Chaudhuri P, Nath B, Birch G (2014) Accumulation of trace metals in grey mangrove Avicennia marina fine nutritive roots: the role of rhizosphere processes. Mar Pollut Bull 79:284–292

    Article  CAS  Google Scholar 

  • Chayapan P, Kruatrachue M, Meetam M, Pokethitiyook P (2015) Phytoremediation potential of Cd and Zn by wetland plants, Colocasia esculenta L. Schott., Cyperus malaccensis Lam., and Typha angustifolia L., grown in hydroponics. J Environ Biol 36(5):1179–1183

    CAS  Google Scholar 

  • Clark CE, Veil JA (2009) Produced water volumes and management practices in the United States. Environmental Science Division, Argonne National Laboratory, ANL/EVS/R-09/1, pp. 64

  • Clay LH, Pichtel J (2018) Plants and soil amendments for remediation of soil affected by synthetic oil and gas production wastewater. Environ Biotechnol 13(2):1–13

    Google Scholar 

  • Deng H, Ye ZH, Wong MH (2004) Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut 132:29–40

    Article  CAS  Google Scholar 

  • Elliott EG, Ettinger AS, Leaderer BP, Bracken MB, Deziel NC (2017) A systematic evaluation of chemicals in hydraulic-fracturing fluids and wastewater for reproductive and developmental toxicity. J Expo Sci Environ Epidemiol 27:90–99

    Article  CAS  Google Scholar 

  • Ernst W, Verkleij JA, Schat H (1992) Metal tolerance in plants. Acta Bot Neer 41:229–248

    Article  CAS  Google Scholar 

  • Essah PA, Davenport R, Tester M (2003) Sodium influx and accumulation in Arabidopsis. Plant Physiol 133(1):307–318

    Article  CAS  Google Scholar 

  • Fontenot BE, Hunt LR, Hildenbrand ZL et al (2013) An evaluation of water quality in private drinking water wells near natural gas extraction sites in the Barnett shale formation. Environ Sci Technol 47(17):10032–10040

    Article  CAS  Google Scholar 

  • Fritioff A, Greger M (2006) Uptake and distribution of Zn, Cu, Cd and Pb in an aquatic plant Potamogeton natans. Chemosphere 63:220–227

    Article  CAS  Google Scholar 

  • Greger M (2004) Metal availability, uptake, transport and accumulation in plants. In: Prasad MNV (ed) Heavy metal stress in plants from biomolecules to ecosystems. Springer-Verlag, Berlin

    Google Scholar 

  • Herath H, Bandara DC, Weerasinghe PA, Iqbal MC, Wijayawardhana HCD (2014) Effect of cadmium on growth parameters and plant accumulation in different rice (Oryza sativa L.) varieties in Sri Lanka. Trop Agric Res 25:532–542

    Article  Google Scholar 

  • Huang R, Tu JC (2001) Effects of nutrient solution pH on the survival and transmission of Clavibacter michiganensis ssp. michiganensis in hydroponically grown tomatoes. Plant Pathol 50(4):503–508

    Article  CAS  Google Scholar 

  • Igunnu ET, Chen GZ (2014) Produced water treatment technologies. Int J Low Carbon Technol 9(3):157–177

    Article  CAS  Google Scholar 

  • Ippolito JA, Barbarick KA (2008) Modified nitric acid plant tissue digest method. Communic Soil Sci Plant Anal 31(15–16):2473–2482. https://doi.org/10.1080/00103620009370602

    Article  Google Scholar 

  • Jakl M, Dytrtová JJ, Miholová A, Kolihová D, Száková J, Tlustoš P (2009) Passive diffusion assessment of cadmium and lead accumulation by plants in hydroponic systems. Chem Spec Bioavail 21:111–120

    Article  CAS  Google Scholar 

  • John MK (1972) Cadmium adsorption maxima of soil as measured by the Langmuir isotherm. Can J Soil Sci 52:343

    Article  CAS  Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S (2012) Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int J Plant Prod 3(3):65–76

    Google Scholar 

  • Kabata-Pendias A (2010) Trace elements in soils and plants, 4th edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Kadlec R, Roy S, Munson R, Charlton S, Brownlie W (2010) Water quality performance of treatment wetlands in the Imperial Valley, California. Ecol Engin 36:1093–1107

    Article  Google Scholar 

  • Kaewtubtim P, Meeinkuirt W, Seepom S, Pichtel J (2016) Heavy metal phytoremediation potential of mangrove plant species of Pattani Bay, Thailand. Appl Ecol 14(1):367–382

    Google Scholar 

  • Kassotis CD, Tillitt DE, Lin CH, McElroy JA, and Nagel SC (2015) Endocrine-disrupting chemicals and oil and natural gas operations: potential environmental contamination and recommendations to assess complex environmental mixtures. Environmental Health Perspectives, https://ehp.niehs.nih.gov/wp-content/uploads/advpub/2015/8/ehp.1409535.acco.pdf. Accessed 27 Jan 2017

  • Khatib Z, Verbeek P (2003) Water to value- produced water management for sustainable field development of mature and green fields. J Pet Technol 55:26–28

    Article  Google Scholar 

  • Kim KR, Owens G, Naidu R, Kim KH (2008) Influence of vetiver grass (Vetiveria zizanioides) on rhizosphere chemistry in long-term contaminated soils. Kor J Soil Sci Fert 41:55–64

    CAS  Google Scholar 

  • Klassen SP, McLean JE, Grossi PR, Sims RC (2000) Fate and behavior of lead in soils planted with metal-resistant species (River Birch and Smallwing Sedge). J Environ Qual 29:1826–1834

    Article  CAS  Google Scholar 

  • Klucakova M (2012) Comparative study of binding behaviour of Cu(II) with humic acid and simple organic compounds by ultrasound spectrometry. Open Colloid Sci J 5:5–12

    Article  CAS  Google Scholar 

  • Lacerda LD, Fernandez MA, Calazans CF, Tanizaki KF (1992) Bioavailability of heavy metals in sediments of two coastal lagoons in Rio de Janeiro, Brazil. Hydrobiol 228:65–70

    Article  CAS  Google Scholar 

  • Lacerda LD, Carvalho CEV, Tanizaki KF, Ovalle ARC, Rezende CE (1993) The biogeochemistry and trace metals distribution of mangrove rhizospheres. Biotropica 25:252–257

    Article  Google Scholar 

  • Lasat MM, Pence NS, Garvin DF, Ebbs SD, Kochian LV (2000) Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J Exp Bot 51:71–79

    Article  CAS  Google Scholar 

  • Lefévre I (2007). Investigation of three Mediterranean plant species suspected to accumulate and tolerance high cadmium and zinc levels. PhD Dissertation, Université catholique de Louvain, Louvain-la-Neuve, Belgium

  • Lepp NW, Dickinson NM (1987) Partitioning and transport of copper in various components of Kenyan Coffea arabica stands. In: Coughtrey PJ, Martin MH, Unsworth M (eds) Pollutant transport and fate in ecosystems. Blackwell Scientific, Oxford

    Google Scholar 

  • Li J, Yu H, Luan Y (2015) Meta-analysis of the copper, zinc and cadmium absorption capacities of aquatic plants in heavy metal-polluted water. Int J Environ Res Pub Health 12:14958–14973

    Article  CAS  Google Scholar 

  • Liu L, Sun H, Chen J, Zhang Y, Li D, Li C (2014) Effects of cadmium (Cd) on seedling growth traits and photosynthesis parameters in cotton (Gossypium hirsutum L.). Plant Omics J 7:284–290

    Article  CAS  Google Scholar 

  • Liu JT, Sun JJ, Fang SW, Han L, Feng Q, Hu F (2016) Nutrient removal capacities of four submerged macrophytes in the Poyang lake basin. Appl Ecol Environ Res 14:107–124

    Article  Google Scholar 

  • Lux A, Sottníková A, Opatrná J, Greger M (2004) Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiol Plant 120:537–545

    Article  CAS  Google Scholar 

  • Maguire-Boyle SJ, Barron AR (2014) Organic compounds in produced waters from shale gas wells. Environ Sci Proc Impact 16:2237–2248

    Article  CAS  Google Scholar 

  • Maine MA, Sune N, Hadad H, Sanchez G, Bonetto C (2006) Nutrient and metal removal in a constructed wetland for wastewater treatment from a metallurgic industry. Ecol Eng 26:341–347

    Article  Google Scholar 

  • Marcellus (2010) List of 78 chemicals used in hydraulic fracturing fluid in Pennsylvania. http://marcellusdrilling.com/2010/06/list-of-78-chemicals-used-in-hydraulic-fracturing-fluid-in-pennsylvania/. Accessed 20 Feb 2017

  • Marchand C, Allenbach M, Lallier-Vergès E (2011) Relationships between heavy metals distribution and organic matter cycling in mangrove sediments (Conception Bay, New Caledonia). Geoderma 160:444–456

    Article  CAS  Google Scholar 

  • Marchiol L, Assolari A, Sacco P, Zerbi G (2004) Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ Pollut 132:21–27

    Article  CAS  Google Scholar 

  • Mateos-Naranjo E, Castellanos E, Perez-Martin AM (2014) Zinc tolerance and accumulation in the halophytic species Juncus acutus. Env Exp Bot 100:114–121

    Article  CAS  Google Scholar 

  • McCauley A, Jones C, Jacobsen J (2009) Plant nutrient functions and deficiency and toxicity symptoms. In: Nutrient management module 9, Montana State University, Bozeman

    Google Scholar 

  • McGrath SP (1998) Phytoextraction for soil remediation. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, pp 261–287

    Google Scholar 

  • McNaughton SJ, Folsom TC, Lee T, Park F, Price C, Roeder D, Schmitz J, Stockwell C (1974) Heavy metal tolerance in Typha latifolia without the evolution of tolerant races. Ecol 55:1163–1165

    Article  CAS  Google Scholar 

  • Meeinkuirt W, Pokethitiyook P, Kruatrachue M, Tanhan P, Chaiyarat R (2012) Phytostabilization of lead by various tree species using pot and field trial experiments. Int J Phytorem 14:925–938

    Article  Google Scholar 

  • Meeinkuirt W, Kruatrachue M, Pichtel J, Phusantisampan T, Saengwilai P (2016) Influence of organic amendments on phytostabilization of Cd-contaminated soil by Eucalyptus camaldulensis. Sci Asia 42:83–91

    Article  CAS  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytoremediation of mine tailings in temperate and arid environment. Rev Environ Sci Biotech 14:277–282

    Google Scholar 

  • Miretzky P, Saralegui A, Cirelli AF (2004) Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere 57:997–1005

    Article  CAS  Google Scholar 

  • Mojiri A, Aziz HA, Zahed MA, Aziz SQ, Selamat MRB (2013) Phytoremediation of heavy metals from urban waste leachate by southern cattail (Typha domingensis). Int J Sci Res Environ Sci 1(4):63–70

    Google Scholar 

  • Murray Gulde C, Heatley JE, Karanfil T, Rodgers JH Jr, Myers JE (2003) Performance of a hybrid reverse osmosis-constructed wetland treatment system for brackish oil field produced water. Water Res 37:705–713

    Article  CAS  Google Scholar 

  • Murray H, Thompson K, Macfie SM (2009) Site- and species-specific patterns of metal bioavailability in edible plants. Bot 87:702–711

    Article  CAS  Google Scholar 

  • Natural Resources Defense Council (NRDC) (2015) Fracking’s most wanted: lifting the veil on oil and gas company spills and violations. IP:15-01-A, April 2015, http://www.nrdc.org/land/drilling/files/fracking-company-violations-IP.pdf. Accessed 17 June 2018

  • Niu ZX, Sun LN, Sun TH, Li YS, Hong WA (2007) Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture. J Environ Sci 19(8):961–967

    Article  CAS  Google Scholar 

  • Nouri J, Khorasani N, Lorestani B, Karami M, Hassani AH, Yousefi N (2009) Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environ Earth Sci 59(2):315–323

    Article  CAS  Google Scholar 

  • O’Rourke D, Connolly S (2003) Just oil? The distribution of environmental and social impacts of oil production and consumption. Ann Rev Environ Res 28:587–617

    Article  Google Scholar 

  • Odjegba VJ, Fasidi IO (2007) Phytoremediation of heavy metals by Eichhornia crassipes. Environmentalist 27:349–355

    Article  Google Scholar 

  • Osmolovskaya NG, Kurilenko VV (2001) Biogeochemical aspects of heavy metals phytoindication in urban aquatic systems. In: Weber J (ed) Biogeochemical processes and cycling of elements in the environment. Polish Society of Humic Substances, Wroclaw, pp 217–218

    Google Scholar 

  • Otero XL, Ferreira TO, Vida-Torrado P, Macias F (2006) Spatial variation in pore water geochemistry in a mangrove system (Pai Matos island, Cananeia-Brazil). Appl Geochem 21:2171–2186

    Article  CAS  Google Scholar 

  • Otero A, Fiol S, Antelo J, and Arce F (2015) Studying and modeling the effect of organic matter on the sorption of inorganic ions on goethite. Goldschmidt. Abstracts, http://goldschmidt.info/2015/uploads/abstracts/finalPDFs/2365.pdf. Accessed 14 Dec 2015

  • Panich-Pat T, Pokethitiyook P, Kruatrachue M, Upatham ES, Srinives P, Lanza GR (2004) Removal of lead from contaminated soils by Typha angustifolia. Water Air Soil Pollut 155:159–171

    Article  CAS  Google Scholar 

  • Papaevangelou VA, Gikas GD, Tsihrintzis VA (2017) Chromium removal from wastewater using HSF and VF pilot-scale constructed wetlands: overall performance, and fate and distribution of this element within the wetland environment. Chemosphere 168:716–730

    Article  CAS  Google Scholar 

  • Peng D, Shafi M, Wang Y, Li S, Yan W, Chen J, Ye Z, Liu D (2015) Effect of Zn stresses on physiology, growth, Zn accumulation, and chlorophyll of Phyllostachys pubescens. Environ Sci Pollut Res 22:14983–14992

    Article  CAS  Google Scholar 

  • Phaenark C, Pokethitiyook P, Kruatrachue M, Ngernsansaruay C (2009) Cd and Zn accumulation in plants from the Padaeng zinc mine area. Int J Phytorem 11:479–495

    Article  CAS  Google Scholar 

  • Phusantisampan T, Meeinkuirt W, Saengwilai P, Pichtel J, Chaiyarat R (2016) Phytostabilization potential of two ecotypes of Vetiveria zizanioides in cadmium-contaminated soils: greenhouse and field experiments. Environ Sci Pollut Res 23:20027–20038

    Article  CAS  Google Scholar 

  • Pichtel J (2016) Oil and gas production wastewater: soil contamination and pollution prevention. Appl Environ Soil Sci. p. 1-24. downloads.hindawi.com/journals/aess/aip/2707989.pdf. Accessed 14 Dec 2016

  • Pinto AP, Mota AM, deVarennes A, Pinto FC (2004) Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Sci Total Environ 326:239–247

    Article  CAS  Google Scholar 

  • Pip E, Stepaniuk J (1992) Cadmium, copper and lead in sediments. Arch fur Hydrobiol 124:337–355

    CAS  Google Scholar 

  • Raskin I, Ensley B (2000) Phytoremediation of toxic metals using plants to clean up the environment. Wiley, Chichester

    Google Scholar 

  • Rezvani M, Zaefarian F (2011) Bioaccumulation and translocation factors of cadmium and lead in Aeluropus littoralis. Austral J Agric Eng 2(4):114–119

    Google Scholar 

  • Saengwilai P, Meeinkuirt W, Pichtel J, Koedrith P (2017) Influence of amendments on Cd and Zn uptake and accumulation in rice (Oryza sativa L.) in contaminated soil. Environ Sci Pollut Res 24:15756–15767

    Article  CAS  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109(4):1427–1433

    Article  CAS  Google Scholar 

  • Sasmaz A, Obek E, Hasar H (2008) The accumulation of heavy metals in Typha latifolia L. grown in a stream carrying secondary effluent. Ecol Eng 33:278–284

    Article  Google Scholar 

  • Simon L, Prokisch J, Kovács B, Gy˝ori Z (1998) Phytoextraction of heavy metals from a galvanic mud contaminated soil. In: Filep G (ed) Soil Pollution. Agricultural University of Debrecen, Debrecen, Hungary, pp 289–295

    Google Scholar 

  • Skinner K, Wright N, Porter-Goff E (2007) Mercury uptake and accumulation by four species of aquatic plants. Environ Pollut 145:234–237

    Article  CAS  Google Scholar 

  • Sparks DL (1996) Methods of soil analysis, Part 3. In: Chemical methods. Soil Science Society of America, Madison, WI, pp 555–574

    Google Scholar 

  • Sricoth T, Meeinkuirt W, Pichtel J, Taeprayoon P, Saengwilai P (2017) Synergistic phytoremediation of wastewater by two aquatic plants (Typha angustifolia and Eichhornia crassipes) and potential as biomass fuel. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-0813-5

    Article  Google Scholar 

  • Sricoth T, Meeinkuirt W, Saengwilai P, Pichtel J, Taeprayoon P (2018) Aquatic plants for phytostabilization of cadmium and zinc in hydroponic experiments. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-018-1714-y

    Article  Google Scholar 

  • Street RA, Kulkarni MG, Stirk WA, Southway C, Abdillahi HS, Chinsamy M, Staden JV (2009) Effect of cadmium uptake and accumulation on growth and antibacterial activity of Merwilla plumbea—an extensively used medicinal plant in South Africa. S Afr J Bot 75:611–616

    Article  CAS  Google Scholar 

  • Sundaravadivel M, Vigneswaran S (2001) Constructed wetlands for wastewater treatment. Crit Rev Environ Sci Technol 31(4):351–409

    Article  CAS  Google Scholar 

  • Szucs J (2011) Plant uptake study: The hyperaccumulating and remediating potential of three plant species. MS thesis. Royal Roads University, Victoria, BC, Canada

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Engin A. https://doi.org/10.1155/2011/939161

    Article  Google Scholar 

  • Tanhan P, Kruatrachue M, Pokethitiyook P, Chaiyarat P (2007) Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Chemosphere 68:323–329

    Article  CAS  Google Scholar 

  • US EPA (US Environmental Protection Agency) (2015) Analysis of Hydraulic Fracturing Fluid. Data from the FracFocus Chemical Disclosure Registry 1.0. EPA/601/R-14/003. Office of Research and Development, Washington, DC

  • USDA-NRCS (US Department of Agriculture-Natural Resources Conservation Service) (2015) A Handbook of Constructed Wetlands, p 6https://www.epa.gov/sites/production/files/2015-10/documents/constructed-wetlands-handbook.pdf. Accessed 21 June 2018

  • Vaculík M, Konlechner C, Langer I, Adlassnig W, Puschenreiter M, Lux A, Hauser M (2012) Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities. Environ Pollut 163:117–126

    Article  CAS  Google Scholar 

  • Veil JA, Puder MG, Elcock D et al (2004) A white paper describing produced water from production of crude oil, natural gas, and coal bed methane. US. DOE, Argonne National Laboratory, Argonne

    Book  Google Scholar 

  • Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–37

    Article  CAS  Google Scholar 

  • Wallace A, Romney EM, Cha JW, Chaudhry FM (1977) Lithium toxicity in plants. Commun Soil Sci Plant Anal 8:773

    Article  CAS  Google Scholar 

  • Wang S, Shi X, Sun H, Chen Y, Pan H, Yang X, Rafiq T (2014) Variations in metal tolerance and accumulation in three hydroponically cultivated varieties of Salix integra treated with lead. PLoS One 9:e108568

    Article  CAS  Google Scholar 

  • Warner NR, Jackson RB, Darrah TH et al (2012) Geochemical evidence for possible natural migration of Marcellus formation brine to shallow aquifers in Pennsylvania. Proc Nat Acad Sci USA 109(30):11961–11966

    Article  CAS  Google Scholar 

  • Wei CY, Chen TB, Huang ZC (2002) Cretan bake (Pteris cretica L.): an arsenic-accumulating plant. Acta Ecol Sin 22:777–782

    Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration review. Environ Internat 30:685–700

    Article  CAS  Google Scholar 

  • Wells N, Whitton JS (1972) A pedochemical survey, Lithium. N Z J Sci 15:90

    CAS  Google Scholar 

  • Xiong J, Lu H, Lu K, Duan Y, An L, Zhu C (2009) Cadmium decreases crown root number by decreasing endogenous nitric oxide, which is indispensable for crown root primordia initiation in rice seedlings. Planta 230:599–610

    Article  CAS  Google Scholar 

  • Ye ZH, Baker AJM, Wong MH, Willis AJ (1997) Zinc, lead and cadmium tolerance, uptake and accumulation by Typha latifolia. New Phytol 136:469–480

    Article  CAS  Google Scholar 

  • Zancheta ACF, De Abreu CA, Zambrosi FCB, Erismann ND, Lagôa AMM (2015) Cadmium accumulation by Jack-bean and sorghum in hydroponic culture. Int J Phytorem 17:298–303

    Article  CAS  Google Scholar 

  • Zhang BY, Zheng JS, Sharp RG (2010) Phytoremediation in engineered wetlands: mechanisms and applications. Proc Environ Sci 2:1315–1325

    Article  Google Scholar 

  • Zhao FJ, Lombi E, McGrath SP (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249:37–43

    Article  CAS  Google Scholar 

  • Zhou LX, Wong JWC (2001) Effect of dissolved organic matter from sludge and sludge compost on soil copper sorption. J Environ Qual 30:878–883

    Article  CAS  Google Scholar 

  • Zimdahl RL (1975) Entry and movement in vegetation of lead derived from air and soil sources. In: Paper presented at 68th annual meeting of the air pollution control association, Boston, MA, June 15, 1975

  • Zu YQ, Li Y, Chen JJ, Chen HY, Qin L, Schvartz C (2005) Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ Internat 31:755–762

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support from the Ball State University Honors College is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Pichtel.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clay, L., Pichtel, J. Treatment of Simulated Oil and Gas Produced Water via Pilot-Scale Rhizofiltration and Constructed Wetlands. Int J Environ Res 13, 185–198 (2019). https://doi.org/10.1007/s41742-018-0165-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41742-018-0165-0

Keywords

Navigation