Skip to main content

Advertisement

Log in

Parametric Optimization and Ranking Analysis of AA2024−Al2O3/AlN Alloy Composites Fabricated Via Stir Casting Route Under Dry Sliding Wear Investigation

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In this investigation, aluminum alloy (AA2024) composite reinforced with ceramic particulates, namely alumina (Al2O3) and aluminum nitride (AlN), were designed and fabricated through a semi-automatic stir casting route. The ceramics are added complementary (0–4 wt% @ step of 1%), resulting in five composite specimens, namely ON04, ON13, ON22, ON31, and ON40. The composite specimens are then analyzed for their densities, mechanical, and tribological behavior (steady-state sliding wear analysis), adopting ASTM standards. The Taguchi design of experiment technique was adopted for planning test preliminaries and input sliding wear operating parameters (like sliding velocity, sliding distance, normal load, composition, and environment temperature) optimization using ANOVA. Worn surface morphology studies were reported using a scanning electron microscope (SEM) along with energy-dispersive X-ray spectroscopy (EDS) to understand prevalent wear mechanisms in real time. Additionally, a decision-making technique such as the preference selection index (PSI) system was used to analyze the alloy composites ranking. The theoretical densities vary 2.784–2.798 g/cc, while actual densities vary 2.539–2.546 g/cc, and voids fraction vary within the 0.5–9.3 % range. The hardness varies 71.6–85.4 HRB, impact strength varies 54–170 J, and tensile strength varies 190–265 MPa. The ranking orders of the significance of input operating factors are environment temperature > normal load > sliding velocity > reinforcement content > sliding distance. It has been found that the alloy composite sample ON22 with an equal presence of both ceramics exhibits overall optimum mechanical properties as well as superior steady-state behavior, which was consistent with the results of the PSI ranking method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. M. Kumar, A. Kumar, Sliding wear performance of graphite reinforced AA6061 alloy composites for rotor drum/disk application. Mater. Today Proc. 27, 1972–1976 (2019). https://doi.org/10.1016/j.matpr.2019.09.042

    Article  CAS  Google Scholar 

  2. M. Bai, Q. Xue, Q. Ge, Wear of 2024 Al-Mo-SiC composites under lubrication. Wear 195, 100–105 (1996). https://doi.org/10.1016/0043-1648(95)06808-2

    Article  CAS  Google Scholar 

  3. K.N. Mathan, K.S. Senthil, L.A. Kumaraswamidhas, Aerospace application on Al 2618 with reinforced – Si3N4, AlN and ZrB2 in-situ composites. J. Alloys Compd. 672, 238–250 (2016). https://doi.org/10.1016/j.jallcom.2016.02.155

    Article  CAS  Google Scholar 

  4. A. Baradeswaran, A. Elayaperumal, I.R. Franklin, A statistical analysis of optimization of wear behaviour of Al- Al2O3 composites using taguchi technique. Procedia Eng. 64, 973–982 (2013). https://doi.org/10.1016/j.proeng.2013.09.174

    Article  CAS  Google Scholar 

  5. B.C. Kandpal, J. Kumar, H. Singh, Fabrication and characterisation of Al2O3/aluminium alloy 6061 composites fabricated by Stir casting. Mater. Today Proc. 4, 2783–2792 (2017). https://doi.org/10.1016/j.matpr.2017.02.157

    Article  Google Scholar 

  6. S.J. Hong, H.M. Kim, D. Huh et al., Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites. Mater. Sci. Eng. A 347, 198–204 (2003). https://doi.org/10.1016/S0921-5093(02)00593-2

    Article  Google Scholar 

  7. G.Q. Chen, W.S. Yang, K. Ma et al., Aging and thermal expansion behavior of Si3N4p/2024Al composite fabricated by pressure infiltration method. Trans. Nonferrous Met. Soc. China 21, s262–s273 (2011). https://doi.org/10.1016/S1003-6326(11)61589-6

    Article  Google Scholar 

  8. R. Abhijith, T.M. Harish, Fabrication analysis of aluminium (Al-2024) and tungsten carbide (WC) metal matrix composite by in-situ method. Int J Eng Res V5, 400–407 (2016). https://doi.org/10.17577/ijertv5is080332

    Article  Google Scholar 

  9. S. Pournaderi, F. Akhlaghi, Wear behaviour of Al6061-Al2O3 composites produced by in-situ powder metallurgy (IPM). Powder Technol. 313, 184–190 (2017). https://doi.org/10.1016/j.powtec.2017.03.019

    Article  CAS  Google Scholar 

  10. F. Akhlaghi, A. Zare-Bidaki, Influence of graphite content on the dry sliding and oil impregnated sliding wear behavior of Al 2024-graphite composites produced by in situ powder metallurgy method. Wear 266, 37–45 (2009). https://doi.org/10.1016/j.wear.2008.05.013

    Article  CAS  Google Scholar 

  11. N. Hosseini, F. Karimzadeh, M.H. Abbasi, M.H. Enayati, A comparative study on the wear properties of coarse-grained Al6061 alloy and nanostructured Al6061-Al2O3 composites. Tribol Int 54, 58–67 (2012). https://doi.org/10.1016/j.triboint.2012.04.020

    Article  CAS  Google Scholar 

  12. R.S.J. David, I. Dinaharan, P.S. Vibin, P.M. Mashinini, Microstructure and mechanical characterization of in situ synthesized AA6061/(TiB2+Al2O3) hybrid aluminum matrix composites. J. Alloys Compd. 740, 529–535 (2018). https://doi.org/10.1016/j.jallcom.2018.01.016

    Article  CAS  Google Scholar 

  13. G. Iacob, V.G. Ghica, M. Buzatu et al., Studies on wear rate and micro-hardness of the Al/Al2O3/Gr hybrid composites produced via powder metallurgy. Compos. Part B Eng. 69, 603–611 (2015). https://doi.org/10.1016/j.compositesb.2014.07.008

    Article  CAS  Google Scholar 

  14. P. Sharma, S. Sharma, D. Khanduja, Production and some properties of Si3N4 reinforced aluminium alloy composites. J. Asian Ceram. Soc. 3, 352–359 (2015). https://doi.org/10.1016/j.jascer.2015.07.002

    Article  Google Scholar 

  15. K. Umanath, K. Palanikumar, S.T. Selvamani, Analysis of dry sliding wear behaviour of Al6061/SiC/Al2O3 hybrid metal matrix composites. Compos. Part B Eng. 53, 159–168 (2013). https://doi.org/10.1016/j.compositesb.2013.04.051

    Article  CAS  Google Scholar 

  16. A. Devaraju, A. Kumar, B. Kotiveerachari, Influence of addition of Grp/Al2O3p with SiCp on wear properties of aluminum alloy 6061–T6 hybrid composites via friction stir processing. Trans. Nonferrous Met. Soc. China 23, 1275–1280 (2013). https://doi.org/10.1016/S1003-6326(13)62593-5

    Article  CAS  Google Scholar 

  17. S. Dharmalingam, R. Subramanian, V.K. Somasundara, B. Anandavel, Optimization of tribological properties in aluminum hybrid metal matrix composites using gray-taguchi method. J Mater Eng Perform 20, 1457–1466 (2011). https://doi.org/10.1007/s11665-010-9800-4

    Article  CAS  Google Scholar 

  18. M. Kok, Abrasive wear of Al2O3 particle reinforced 2024 aluminium alloy composites fabricated by vortex method. Compos. Part A Appl. Sci. Manuf. 37, 457–464 (2006). https://doi.org/10.1016/j.compositesa.2005.05.038

    Article  CAS  Google Scholar 

  19. I. Ozdemir, S. Muecklich, H. Podlesak, B. Wielage, Thixoforming of AA 2017 aluminum alloy composites. J. Mater. Process Technol. 211, 1260–1267 (2011). https://doi.org/10.1016/j.jmatprotec.2011.02.008

    Article  CAS  Google Scholar 

  20. S. Bhaskar, M. Kumar, A. Patnaik, Silicon carbide ceramic particulate reinforced AA2024 alloy composite - part I: evaluation of mechanical and sliding tribology performance. SILICON 12, 843–865 (2020). https://doi.org/10.1007/s12633-019-00181-x

    Article  CAS  Google Scholar 

  21. S. Bhaskar, M. Kumar, A. Patnaik, Microstructure, thermal, thermo-mechanical and fracture analyses of hybrid AA2024-SiC alloy composites. Trans. Indian Inst. Met. 73, 181–190 (2020). https://doi.org/10.1007/s12666-019-01819-5

    Article  CAS  Google Scholar 

  22. S. Bhaskar, M. Kumar, A. Patnaik, Application of hybrid AHP-TOPSIS technique in analyzing material performance of silicon carbide ceramic particulate reinforced AA2024 alloy composite. SILICON 12, 1075–1084 (2020). https://doi.org/10.1007/s12633-019-00211-8

    Article  CAS  Google Scholar 

  23. A. Patnaik, P. Kumar, S. Biswas, M. Kumar, Investigations on micro-mechanical and thermal characteristics of glass fiber reinforced epoxy based binary composite structure using finite element method. Comput. Mater. Sci. 62, 142–151 (2012). https://doi.org/10.1016/j.commatsci.2012.05.020

    Article  CAS  Google Scholar 

  24. A. Kumar, A. Patnaik, I.K. Bhat, Effect of titanium metal powder on thermo- mechanical and sliding wear behavior of Al7075/Ti alloy composites for gear application. Mater. Today Proc. 5, 16919–16927 (2018). https://doi.org/10.1016/j.matpr.2018.04.095

    Article  CAS  Google Scholar 

  25. A. Kumar, A. Patnaik, I.K. Bhat, Tribology analysis of cobalt particulate filled Al 7075 alloy for gear materials: a comparative study. SILICON 11, 1295–1311 (2018). https://doi.org/10.1007/s12633-018-9920-2

    Article  CAS  Google Scholar 

  26. D. Petković, M. Madić, M. Radovanović, V. Gečevska, Application of the performance selection index method for solving machining mcdm problems. Facta Univ. Ser. Mech. Eng. 15, 97 (2017). https://doi.org/10.22190/FUME151120001P

    Article  Google Scholar 

  27. R. Attri, S. Grover, Application of preference selection index method for decision making over the design stage of production system life cycle. J. King Saud Univ. – Eng. Sci. 27, 207–216 (2015). https://doi.org/10.1016/j.jksues.2013.06.003

    Article  Google Scholar 

  28. K. Jha, S. Chamoli, Y.K. Tyagi, H.O. Maurya, Characterization of biodegradable composites and application of preference selection index for deciding optimum phase combination. Mater. Today Proc. 5, 3353–3360 (2018). https://doi.org/10.1016/j.matpr.2017.11.579

    Article  CAS  Google Scholar 

  29. R. Khorshidi, A. Hassani, Comparative analysis between TOPSIS and PSI methods of materials selection to achieve a desirable combination of strength and workability in Al/SiC composite. Mater. Des. 52, 999–1010 (2013). https://doi.org/10.1016/j.matdes.2013.06.011

    Article  CAS  Google Scholar 

  30. M. Panahi, H. Gitinavard, Evaluating the sustainable mining contractor selection problems: an imprecise last aggregation preference selection index method. J. Sustain. Min. 16, 207–218 (2018). https://doi.org/10.1016/j.jsm.2017.12.006

    Article  Google Scholar 

  31. K.T. Mesran, D.S. Ronda, T.W. Fince, Determination of education scholarship recipients using preference selection index. Sci. Technol. 3, 230–234 (2017)

    Google Scholar 

  32. S.Y. Jian, S.J. Tao, X.R. Huang, Preference selection index method for machine selection in a flexible manufacturing cell. Adv. Mater. Res. 1078, 290–293 (2014). https://doi.org/10.4028/www.scientific.net/AMR.1078.290

    Article  Google Scholar 

  33. M. Rahimian, N. Ehsani, N. Parvin, H.R. Baharvandi, The effect of particle size, sintering temperature and sintering time on the properties of Al-Al2O3 composites, made by powder metallurgy. J. Mater. Process Technol. 209, 5387–5393 (2009). https://doi.org/10.1016/j.jmatprotec.2009.04.007

    Article  CAS  Google Scholar 

  34. A. Mazahery, M.O. Shabani, Microstructural and abrasive wear properties of SiC reinforced aluminum-based composite produced by compocasting. Trans. Nonferrous Met. Soc. China 23, 1905–1914 (2013). https://doi.org/10.1016/S1003-6326(13)62676-X

    Article  CAS  Google Scholar 

  35. K.S. Santhosh, M. Devaiah, B.V. Seshu, T. Rajasekharan, Mechanical properties of SiC p /Al2O3 ceramic matrix composites prepared by directed oxidation of an aluminum alloy. Ceram. Int. 38, 1139–1147 (2012). https://doi.org/10.1016/j.ceramint.2011.08.042

    Article  CAS  Google Scholar 

  36. B.M. Mahendra, K.P. Arulshri, N. Iyandurai, Evaluation of mechanical properties of Aluminium alloy 2024 reinforced with silicon carbide and fly ash hybrid metal matrix composites. Am. J. Appl. Sci. 10, 219–229 (2013). https://doi.org/10.3844/ajassp.2013.219.229

    Article  CAS  Google Scholar 

  37. S. Wilson, A.T. Alpas, Effect of temperature on the sliding wear performance of Al alloys and Al matrix composites. Wear 196, 270–278 (1996). https://doi.org/10.1016/0043-1648(96)06923-2

    Article  CAS  Google Scholar 

  38. P. Ravindran, K. Manisekar, P. Rathika, P. Narayanasamy, Tribological properties of powder metallurgy - Processed aluminium self lubricating hybrid composites with SiC additions. Mater. Des. 45, 561–570 (2013). https://doi.org/10.1016/j.matdes.2012.09.015

    Article  CAS  Google Scholar 

  39. B.A. Kumar, Murugan n, Dinaharan I, Dry sliding wear behavior of stir cast AA6061-T6/AlNp composite. Trans. Nonferrous Met. Soc. China 24, 2785–2795 (2014). https://doi.org/10.1016/S1003-6326(14)63410-5

    Article  CAS  Google Scholar 

  40. S. Mahdavi, F. Akhlaghi, Effect of the graphite content on the tribological behavior of Al/Gr and Al/30SiC/Gr composites processed by in situ powder metallurgy (IPM) method. Tribol. Lett. 44, 1–12 (2011). https://doi.org/10.1007/s11249-011-9818-2

    Article  CAS  Google Scholar 

  41. S. Gangwar, A. Patnaik, I.K. Bhat, Tribological and thermomechanical analysis of CaO (quicklime) particulates filled ZA-27 alloy composites for bearing application. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 232, 20–34 (2018). https://doi.org/10.1177/1464420715609196

    Article  CAS  Google Scholar 

  42. H.Y. Chu, J.F. Lin, Experimental analysis of the tribological behavior of electroless nickel-coated graphite particles in aluminum matrix composites under reciprocating motion. Wear 239, 126–142 (2000). https://doi.org/10.1016/S0043-1648(00)00316-1

    Article  CAS  Google Scholar 

  43. D. Lu, M. Gu, Z. Shi, Materials transfer and formation of mechanically mixed layer in dry sliding wear of metal matrix composites against steel. Tribol. Lett. 6, 57–61 (1999). https://doi.org/10.1023/A:1019182817316

    Article  CAS  Google Scholar 

  44. Y.H. Chae, S.S. Kim, Sliding wear behavior of ceramic, plasma sprayed on casting aluminum alloy against SiC ball. Tribol. Lett. 8, 35–40 (2000). https://doi.org/10.1023/A:1019110512715

    Article  CAS  Google Scholar 

  45. K.N. Tandon, Z.C. Feng, X.Y. Li, Wear behavior of SiC particulate reinforced aluminum composites sliding against steel balls under dry and lubricated conditions. Tribol. Lett. 6, 113–122 (1999). https://doi.org/10.1023/A:1019155505930

    Article  CAS  Google Scholar 

  46. A. Kumar, M. Kumar, Fracture toughness and thermal investigations of al7075: cobalt particulates reinforced alloy composites prepared using high vacuum casting method for gear applications: proposed thermal conductivity and fracture toughness modeling. Inter. J. Metal Casting. (2022). https://doi.org/10.1007/s40962-022-00901-x

    Article  Google Scholar 

  47. A. Kumar, M. Kumar, Investigations on physical, mechanical and sliding wear assessment of ZA27 -Gr alloy composites using preference selection Index Method. Inter. J. Metal Casting (2023). https://doi.org/10.1007/s40962-022-00953-z

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to the Department of Mechanical Engineering of Malaviya National Institute of Technology, Jaipur-302017, Rajasthan, INDIA, for their all kinds of financial as well as other miscellaneous infrastructural support. The authors also acknowledge the aid and facilities provided by the Advanced Research Lab for Tribology and Material Research Centre of the Institute for experimentation and characterization work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashiwani Kumar.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest concerning this article's research, authorship, and publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Kumar, R., Bhaskar, S. et al. Parametric Optimization and Ranking Analysis of AA2024−Al2O3/AlN Alloy Composites Fabricated Via Stir Casting Route Under Dry Sliding Wear Investigation. Inter Metalcast 18, 667–687 (2024). https://doi.org/10.1007/s40962-023-01053-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-01053-2

Keywords

Navigation