Skip to main content

Advertisement

Log in

Investigations on Physical, Mechanical and Sliding Wear Assessment of ZA27 -Gr Alloy Composites Using Preference Selection Index Method

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

This present work investigates the physical, mechanical and sliding wear performance of graphite (0–6 wt%)-reinforced ZA-27 alloy composites following ASTM standards. Sliding wear experiments design follows the Taguchi methodology, and the same is adopted for parametric optimization. This follows surface micrograph studies using SEM to understand the associated wear mechanisms responsible for surface damage. Further, the compositions are ranked as per their performance criteria implications using Preference Selection Index (PSI) decision-making technique. It was observed that there are improvements in physical and mechanical properties like void content (2.50–1.33), hardness (107–171 HV), compressive strength (406–496 MPa) flexural strength (300–490 MPa), tensile strength (290–428 MPa) and impact strength (22.76–64 J), as well as sliding wear performance of alloy composites with reinforcement. The AGr-6 alloy composite having 6 wt% graphite particulates were observed to optimize the overall physical, mechanical, and sliding wear performance. The analysis of performance data using the PSI decision-making tool reveals AGr -6 >AGr -4 > AGr -2 > AGr -0 order of material composition that optimizes the required performance. As both decisions are attuned, decision-making tools like PSI could be used in such material selection problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Data Availability

Additional data are available on reasonable request by email to the corresponding author.

References

  1. S.S. Owoeye, D.O. Folorunso, B. Oji, S.G. Borisade, Zinc-aluminum (ZA-27)-based metal matrix composites: a review article of synthesis, reinforcement, microstructural, mechanical, and corrosion characteristics. Int. J. Adv. Manuf. Tech. 100, 373–380 (2019). https://doi.org/10.1007/s00170-018-2760-9

    Article  Google Scholar 

  2. S.C. Tjong, Z.Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng. 29, 49–113 (2000). https://doi.org/10.12691/ijml-1-1-1

    Article  Google Scholar 

  3. S.A.B. Raju, K.C. Hemanth, S.I.N. Jayasimha, Mechanical characterization of ZA-27 reinforced with silicon carbide MMC. Proc. Int. Conf. Eng. Sci. Tech. (2017). https://doi.org/10.21647/ICCTEST/2017/48965

    Article  Google Scholar 

  4. R. Dalmis, H. Cuvalci, A. Canakci, O. Guler, Investigation of graphite nano particle addition on the physical and mechanical properties of ZA27 composites. Adv. Compos. Mater. 25(2), 37 (2016). https://doi.org/10.1177/096369351602500202

    Article  Google Scholar 

  5. G. Ranganath, S.C. Sharma, M. Krishna, Dry sliding wear of garnet reinforced zinc/aluminium metal matrix composites. Wear 251, 1408–1413 (2001). https://doi.org/10.1016/S0043-1648(01)00781-5

    Article  Google Scholar 

  6. S.C. Sharma, K.H.W. Seah, B.M. Satish, B.M. Girish, Effect of short fibers on the mechanical properties of Cast ZA-27alloy composite. Mater. Des. 17(6), 245–250 (1996). https://doi.org/10.1016/S0261-3069(97)00016-2

    Article  CAS  Google Scholar 

  7. K.K. Alaneme, K.O. Adeoye, S.K. Oke, Mechanical and wear behavior of steel chips reinforced ZA27Al composites. Leon. Electro. J. Practices Technol. 29, 1–16 (2016)

    Google Scholar 

  8. B.M. Girisha, K.R. Prakash, B.M. Satisha, Need for optimization of graphite particle reinforcement in ZA-27 alloy composites for tribological applications. Mater. Sci. Eng. A. 530, 382–388 (2011). https://doi.org/10.1016/j.msea.2011.09.100

    Article  CAS  Google Scholar 

  9. A. Baradiswaran, A.E. Perumal, Influence of B4C on the tribological and mechanical properties of Al 7075–B4C composites Int. J. Compos. Part B. 54, 146–152 (2013). https://doi.org/10.1016/j.compositesb.2013.05.012

    Article  CAS  Google Scholar 

  10. O. Güler, F. Erdemir, M. Çelebi, H. Çuvalcı, A. Çanakçı, Effect of nano alumina content on corrosion behavior and microstructure of ZA27/graphite/alumina hybrid nano composites. Results Phys. 15, 102700 (2019). https://doi.org/10.1016/j.rinp.2019.102700

    Article  Google Scholar 

  11. V. Kumar, G. Gautam, A.K. Yadav et al., Influence of InSitu formed ZrB2 particles on dry sliding behavior of ZA based metal matrix composites. Inter Metalcast (2022). https://doi.org/10.1007/s40962-022-00806-9

    Article  Google Scholar 

  12. V. Kumar, G. Gautam, A. Mohan, S. Mohan, Tribology of insitu Zn-Al/ZrB2 composites in reciprocating motion. Int. Metalcast. (2022). https://doi.org/10.1007/s40962-022-00764-2

    Article  Google Scholar 

  13. S.J. Huang, M. Subramani, A.N. Ali et al., The effect of micro-SiCp content on the tensile and fatigue behavior of AZ61 magnesium alloy matrix composites. Int. Metalcast. 15, 780–793 (2021). https://doi.org/10.1007/s40962-020-00508-0

    Article  CAS  Google Scholar 

  14. M. Shariati, M. Moazami-Goudarzi, A. Abbasi, Microstructure, high-temperature tensile and tribological behavior of Zn/Cr composites. Inter Metalcast (2021). https://doi.org/10.1007/s40962-021-00708-2

    Article  Google Scholar 

  15. M. Kumar, S. Bhashkar, N.K. Shakyawal, A. Kumar, Application of preference selection index method in performance (mechanical properties and sliding wear) based ranking of AA2024-Al2O3/SiC alloy composites. Materialwiss. Werkstofftech. 51, 1662–1685 (2020). https://doi.org/10.1002/mawe.201900138

    Article  CAS  Google Scholar 

  16. A. Vencl, V. Šljivić, M. Pokusová et al., Production, microstructure and tribological properties of Zn-Al/Ti metal-metal composites reinforced with alumina nanoparticles. Inter Metalcast 15, 1402–1411 (2021). https://doi.org/10.1007/s40962-020-00565-5

    Article  CAS  Google Scholar 

  17. D. Yousefi, R. Taghiabadi, M.H. Shaeri et al., Enhancing the mechanical properties of Si particle reinforced ZA22 composite by Ti–B modification. Inter Metalcast 15, 206–215 (2021). https://doi.org/10.1007/s40962-020-00447-w

    Article  CAS  Google Scholar 

  18. M.A. Maleque, S. Dyuti, M.M. Rahman, Material selection method in design of automotive brake disc. Proc. Worl. Congr. Eng 1, 2078 (2010)

    Google Scholar 

  19. K. Maniya, M.G. Bhatt, A selection of material using a novel type decision-making method preference selection index method. Mater. Des. 31, 1785 (2010). https://doi.org/10.1016/j.matdes.2009.11.020

    Article  Google Scholar 

  20. B.D. Agarwal, L.J. Broutman, Analysis and performance of fiber composites, 2nd edn. (John Wiley and Sons Inc, Hoboken, 1990)

    Google Scholar 

  21. K. Ravi Kumar, K. Kiran, V.S. Sreebalaji, Characterization of mechanical properties aluminum/tungsten carbide composites. Measurement 102, 142–149 (2017). https://doi.org/10.1016/j.measurement.2017.01.045

    Article  Google Scholar 

  22. S. Santhosh Kumar, M. Devaiah, V. Seshu Bal, T. Rajasekharan, Mechanical properties of SiCp/Al2O3 ceramic matrix composites prepared by directed oxidation of an aluminium. Alloy. Ceram. Int. 38, 1139 (2012). https://doi.org/10.1016/j.ceramint.2011.08.042

    Article  CAS  Google Scholar 

  23. S. Gangwar, A. Patnaik, I.K. Bhat, Tribological and Microstructure behavior of quicklime (Cao) filled silicon bronze alloy for bearing material. Silicon 8, 601–616 (2016). https://doi.org/10.1007/s12633-015-9352-1

    Article  CAS  Google Scholar 

  24. D. Petkovic, M. Madic, M. Radovanovic, V. Gecevska, Application of the performance selection index method for solving machining MCDM problems. Facta. Univ. Ser. Mech. Eng. 15, 97–106 (2017). https://doi.org/10.22190/FUME151120001P

    Article  Google Scholar 

  25. R. Attri, S. Grover, Application of preference selection index method for decision making over the design stage of production system life cycle. J. King Saud. Univ. Eng. Sci. 27, 207–2016 (2015). https://doi.org/10.1016/j.jksues.2013.06.003

    Article  Google Scholar 

  26. K. Jha, R. Kumar, K. Verma, B. Chaudhary, Y.K. Tyagi, S. Singh, Application of modified TOPSIS technique in deciding optimal combination for bio-degradable composite. Vacuum 157, 259–267 (2018). https://doi.org/10.1016/j.vacuum.2018.08.063

    Article  CAS  Google Scholar 

  27. R. Khorshidi, A. Hassani, Comparative analysis between TOPSIS and PSI methods of materials selection to achieve a desirable combination of strength and workability in Al/Sic composite. Mater. Des. 52, 999–1010 (2013). https://doi.org/10.1016/j.matdes.2013.06.011

    Article  CAS  Google Scholar 

  28. M. Panahi, H. Gitinavard, Evaluating the sustainable mining contractor selection problems: an imprecise last aggregation preference selection index method. J. Sustain. Min. 16, 207–2018 (2017). https://doi.org/10.1016/j.jsm.2017.12.006

    Article  Google Scholar 

  29. K. Mesran, R.D. Tampubolon, R.D. Sianturi, F.T. Waruwu, Determination of education scholarship recipients using preference selection index. Sci. Tech. 3, 230–234 (2017). https://doi.org/10.32628/IJSRST173657

    Article  Google Scholar 

  30. S.Y. Jian, S.J. Tao, X.R. Huang, Preference selection index method for machine selection in a flexible manufacturing cell. Adv. Mater. Res. 1078, 290–293 (2014). https://doi.org/10.4028/www.scientific.net/AMR.1078.290

    Article  Google Scholar 

  31. H. Abdizadeh, R. Ebrahimifard, M.A. Baghchesara, Investigation of microstructure and mechanical properties of nano MgO reinforced Al composites manufactured by stir casting and powder metallurgy methods: a comparative study. Compos. Part B 56, 217–221 (2014). https://doi.org/10.1016/j.compositesb.2013.08.023

    Article  CAS  Google Scholar 

  32. S.C. Sharma, B.M. Girish, R. Kamath, B.M. Satis, Graphite particles reinforced ZA-27 alloy composite materials for journal bearing applications. Wear 219, 162 (1998). https://doi.org/10.1016/S0043-1648(98)00188-4

    Article  CAS  Google Scholar 

  33. T. Rajmohan, K. Palanikumar, S. Ranganathan, Evaluation of mechanical and wear properties of hybrid aluminium matrix composites. Trans. Nonferrous Met. Soc. 23, 2509 (2013). https://doi.org/10.1016/S1003-6326(13)62762-4

    Article  CAS  Google Scholar 

  34. A. Baradeswaran, A.E. Perumal, Wear and Mechanical characteristics of Al 7075/Graphite composites. Compos. Part B 56, 472–476 (2014). https://doi.org/10.1016/j.compositesb.2013.08.073

    Article  CAS  Google Scholar 

  35. K.R. Kumar, K. Kiran, V.S. Sreebalaji, Micro structural characteristics and mechanical behaviour of aluminium matrix composites reinforced with titanium carbideJ. Alloys Compd 723, 795–801 (2017). https://doi.org/10.1016/j.jallcom.2017.06.309

    Article  CAS  Google Scholar 

  36. B.V. Ramnath, C. Elanchezhian, M. Jaivignesh, S. Rajaesh, C. Parswjinan, A. Siddique Ahmed, Evaluation of mechanical properties of aluminium alloy–alumina–boron carbide metal matrix composites. Mater. Desi. 58, 332–338 (2014). https://doi.org/10.1016/j.matdes.2014.01.068

    Article  CAS  Google Scholar 

  37. S. Ozden, R. Ekici, N. Nair, Investigation of impact behaviour of aluminium based SiC particle reinforced metal–matrix composites. Compos A Appl S. 38, 484–494 (2007). https://doi.org/10.1016/j.compositesa.2006.02.026

    Article  CAS  Google Scholar 

  38. J.U. Ejiofor, R.G. Reddy, Developments in the processing and properties of particulate Al-Si composites. J. Miner. Proc. 49, 31–37 (1997). https://doi.org/10.1007/s11837-997-0008-5

    Article  CAS  Google Scholar 

  39. B.P. Krishan, P.K. Rohatgi, Modification of Al–Si alloy melts containing graphite particle dispersions. Meter. Technol. 11, 41–44 (1984). https://doi.org/10.1179/030716984803274297

    Article  Google Scholar 

  40. S. Baskaran, V. Anandakrishnan, M. Duraiselvam, Investigations on dry sliding wear behavior of in situ casted AA7075–TiC metal matrix composites by using Taguchi technique. Mater. Des. 60, 184–192 (2014). https://doi.org/10.1016/j.matdes.2014.03.074

    Article  CAS  Google Scholar 

  41. A.K. Mondal, S. Kumar, Dry sliding wear behaviour of magnesium alloy-based hybrid composites in the longitudinal direction. Wear 267, 458–466 (2009). https://doi.org/10.1016/j.wear.2008.12.036

    Article  CAS  Google Scholar 

  42. H. Chi, L. Jiang, G. Chen, Dry sliding friction and wear behaviour of (TiB2 + h-BN)/2024Al composites. Mater. Des. 87, 960–968 (2015). https://doi.org/10.1016/j.matdes.2015.08.088

    Article  CAS  Google Scholar 

  43. K. Niranjan, P.R. Lakshmi Narayanan, Optimization of process parameters for in situ casting of Al/TiB2 composites through response surface methodology. Trans. Nonferrous Met. Soc. China 23, 1269–1274 (2013). https://doi.org/10.1016/S1003-6326(13)62592-3

    Article  CAS  Google Scholar 

  44. S.A. Alidokhta, A.A. Zadeh, H. Assadi, Effect of applied load on the dry sliding wear behaviour and the subsurface deformation on hybrid metal matrix composite. Wear 305, 291–298 (2013). https://doi.org/10.1016/j.wear.2012.11.043

    Article  CAS  Google Scholar 

  45. H.R. Manohara, T.M. Chandrashekharaiah, K. Venkateswarlu, S.A. Kori, Dry sliding wear response of A413 alloy: influence of intermetallics and test parameters. Tribol. Int. 51, 54–60 (2012). https://doi.org/10.1016/j.triboint.2012.02.023

    Article  CAS  Google Scholar 

  46. C.S. Ramesh, R. Keshavamurthy, B.H. Channabasappa, S. Promod, Friction and wear behaviour of Ni–P coated Si3N4 reinforced Al6061 composites. Tribol. Int. 43, 623–634 (2010). https://doi.org/10.1016/j.triboint.2009.09.011

    Article  CAS  Google Scholar 

  47. J.C. Walker, W.M. Rainforth, H. Jones, Lubricated sliding wear behaviour of aluminium alloy composites. Wear 259, 577–589 (2005). https://doi.org/10.1016/j.wear.2005.01.001

    Article  CAS  Google Scholar 

  48. E. Naveena, S. Ilangovan, Optimization of hardness and wear parameters of Al-Cu-Si alloy using design of experiments. Mater. Today: Proc. 22, 2704–2714 (2020). https://doi.org/10.1016/j.matpr.2020.03.401

    Article  CAS  Google Scholar 

  49. O. Savas, Application of Taguchi’s method to evaluate abrasive wear behavior of functionally graded aluminum-based composite. Mater. Today Communi. 23, 100 (2020). https://doi.org/10.1016/j.mtcomm.2020.100920

    Article  CAS  Google Scholar 

  50. T. Sathis, S. Karthick, Wear behaviour analysis on aluminium alloy 7050 with reinforced SiC through Taguchi approach. J. Mater. Sci. Technol. 9(3), 3481–3487 (2020). https://doi.org/10.1016/j.jmrt.2020.01.085

    Article  CAS  Google Scholar 

  51. S. Arif, B. jamil, M.B.N. Shaikh, T. Aziz, A.H. Ansari, M. Khan, Characterization of surface morphology, wear performance and modelling of graphite reinforced aluminium hybrid composites. Eng. Sci. Tech. Int. J. 23, 674–690 (2020). https://doi.org/10.1016/j.jestch.2019.07.001

    Article  Google Scholar 

  52. X. Li, M. Sosa, U. Olofesson, A pin-on-disc study of the tribology characteristics of sintered versus standard steel gear materials. Wear 340, 31–40 (2015). https://doi.org/10.1016/j.wear.2015.01.032

    Article  CAS  Google Scholar 

  53. T.S. Kran, M.P. Kumar, S. Basarajappa, B.M. Viswanatha, Dry sliding wear behavior of heat treated hybrid metal matrix composite using Taguchi techniques. Mater. Des. 63, 294–304 (2014). https://doi.org/10.1016/j.matdes.2014.06.007

    Article  CAS  Google Scholar 

  54. S. Gangwar, V. Payak, V.K. Pathak, A. Jamwal, P. Gupta, Characterization of mechanical and tribological properties of graphite and alumina reinforced zinc alloy (ZA-27) hybrid metal matrix composites. J. Compos. Mater. 54(30), 4751–4771 (2020). https://doi.org/10.1177/0021998320938442

    Article  CAS  Google Scholar 

  55. A. Kumar, M. Kumar, B. Pandey, Investigations on mechanical and sliding wear performance of AA7075-SiC/Marble dust/Graphite hybrid alloy composites using hybrid ENTROPY-VIKOR method. Silicon 14, 2051–2065 (2022). https://doi.org/10.1007/s12633-021-00996-7/2021

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledged the Advanced Research Laboratory for Tribology and Material Research Centre of Malaviya National Institute of Technology Jaipur for characterization facilities and other infrastructure support.

Funding

No funding to declare.

Author information

Authors and Affiliations

Authors

Contributions

AK contributed to conceptualization, methodology, experimentation, original draft preparation; MK contributed to reviewing and editing for the final draft preparation.

Corresponding author

Correspondence to Ashiwani Kumar.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest concerning these articles’ research, authorship, and publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumar, M. Investigations on Physical, Mechanical and Sliding Wear Assessment of ZA27 -Gr Alloy Composites Using Preference Selection Index Method. Inter Metalcast 17, 2818–2835 (2023). https://doi.org/10.1007/s40962-022-00953-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-022-00953-z

Keywords

Navigation