Skip to main content
Log in

Fracture Toughness and Thermal Investigations of Al 7075 — Cobalt Particulates Reinforced Alloy Composites Prepared Using High Vacuum Casting Method for Gear Applications: Proposed Thermal Conductivity and Fracture Toughness Modeling

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

This work reports thermo-mechanical, thermo-gravimetric, thermal conductivity, and fracture toughness behavior of Cobalt particulates (0–2wt% @ step of 0.5%) reinforced Al 7075 alloy composites fabricated via a high vacuum casting method for gear materials. The experimentally evaluated results show that thermo-mechanical and thermo-gravimetric magnitudes improve with reinforcing phase content. The fracture toughness measured experimentally at various crack lengths of 1, 3, and 5 mm was found to be in the range of 1.69–4.07 MPa.m1/2 and shows a rising trend with particulate content, while thermal conductivity (range 130–120 W/m°K) shows the diminishing trend. A theoretical model of both characteristics was proposed and validated with an error of ~ 4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data Availability

Additional data are available on reasonable request by email to the corresponding author.

Abbreviations

K 1 or K SIF :

Fracture toughness of designed composite material or Stress intensity factor of the material.

K 1C :

Critical value of stress intensity factor

r :

Distance from notch tip

α (β):

Function of crack length and specimen width

a :

Crack length of specimen

B :

Thickness of coupon

F :

Maximum load (stress)

θ :

Crack angle of specimen

σ c :

Fracture stress or crack stress

k C :

Thermal conductivity of composite specimen

k p :

Thermal conductivity of particulate metal powder

k m :

Thermal conductivity of material

V p :

Volume fraction of cobalt particulate

Ψ:

Spherical particulate

α p :

Thermal conductivity of particulate

α m :

Thermal conductivity of material

α d :

Thermal conductivity of composite volume fraction

V d :

Volume fraction of cobalt particulate

References

  1. C. Toy, W.D. Scott, J. Am. Ceram. Soc. 73, 97–101 (2013)

    Article  Google Scholar 

  2. B.G. Park, A.G. Crosky, A.K. Hellier, Compos. B. Eng. 39, 1270–1279 (2008)

    Article  Google Scholar 

  3. V. Kukshal, S. Gangwar, A. Patnaik, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. (2015). https://doi.org/10.1177/1464420713499514

    Article  Google Scholar 

  4. T.G. Mamatha, A. Patnaik, B. Sandhyarani, B.K. Satapathy, A.K. Redhewall, Comput. Mater. Sci. 55, 100–112 (2012)

    Article  CAS  Google Scholar 

  5. M. Song, X. Daihong, Mater. Sci. Eng. A 474, 371–375 (2008)

    Article  Google Scholar 

  6. D.S. Prasad, S. Shoba, K.R. Varna, Eng. Sci. Technol. Int. J. 18, 674–679 (2015)

    Google Scholar 

  7. B. Abdizadeh, Ceram. Int. 39, 2045–2050 (2013)

    Article  CAS  Google Scholar 

  8. D. Zhang, F. Scarpa, Y. Ma, J. Hong, Mater. Des. 56, 69–77 (2014)

    Article  CAS  Google Scholar 

  9. S. Singh, K. Pal, Mater. Sci. Eng. A 644, 325–336 (2015)

    Article  CAS  Google Scholar 

  10. B.M. Girish, K.R. Prakash, B.M. Satish, Mater. Des. 32, 1050–1056 (2011)

    Article  CAS  Google Scholar 

  11. F. Gen-lian, LIHaiyang, Z Di. Trans. Nonferrous Met. Soc. China 22, 2512–2516 (2012)

    Google Scholar 

  12. S. Sastry, M. Krishna, J. UchilJ, Alloy. Compd. 314, 268–274 (2001)

    Article  CAS  Google Scholar 

  13. H. Anantharaman, V.C. Shunmugasamy, O.M. Strbik, Int J Impact Eng. 82, 14–24 (2015)

    Article  Google Scholar 

  14. A. Jayaraj, S.N. Moorthy, V.S.N. Venkataramana, S. Jaikumar, V. Srinivas, SN Appl. Sci. 2, 1259 (2020)

    Article  CAS  Google Scholar 

  15. T. Wejrzanowski, M. Grybczuk, M. Chmielewski, K. Pietrzak, K.J. Kurzydlowski, A.S. Nedza, Mater. Des. 99, 163–173 (2016)

    Article  CAS  Google Scholar 

  16. A. Kumar, M. Kumar, S. Gothwal, P. Srivastava, J. Bio Tribo Corros. (2022). https://doi.org/10.1007/s40735-022-00705-w

    Article  Google Scholar 

  17. B.M. Santosh Kumar, D.P. Girish, K.B. Yogesh, M.C. Jeevan, Mater Res. Express 6, 126570 (2019)

    Article  Google Scholar 

  18. R.L. Hamilton, O.K. Crosser, Ind. Eng. Chem. Fund 1, 187–191 (1962)

    Article  CAS  Google Scholar 

  19. Metals-Mechanical Testing, Elevated and Low Temperature Tests, Metallographic, (American Society for Testing and Materials, West Conshohocken, PA, 2000)

  20. M. Levin, B. Karlsson, Mater. Sci. Technol. 7, 596–607 (1991)

    Article  CAS  Google Scholar 

  21. J.E. Srawely, M.H. Jones, W.F. Brown, J. Mater. Res. Stand. ASTM 7, 262 (1967)

    Google Scholar 

  22. J.E. Srawely, Int. J. Fract. 12, 476 (1976)

    Google Scholar 

  23. D. Hasselman, L.F. Johnson, J. Compos. Mater. 21, 508–515 (1987)

    Article  Google Scholar 

  24. R. Keshavamurthy, S. Mageri, G. Raj, Res. J. Mater. Sci. 1(10), 6–10 (2013)

    Google Scholar 

  25. A. Patnaik, M.D. Abdulla, A. Satapathy, Mater. Des. 31, 837–849 (2010)

    Article  CAS  Google Scholar 

  26. X.K. Zhu, J.A. Joyce, Eng. Fract. Mech. 85, 1–46 (2012)

    Article  Google Scholar 

  27. S. Singh, K. Pal, Mater. Des. 82, 223–237 (2015)

    Article  CAS  Google Scholar 

  28. M. Papakyriacou, H.R. Mayer, S.E. Tschegg-Stanzl, Fatigu. Fract. Eng Mater. Struc. 18, 477–487 (1995)

    Article  CAS  Google Scholar 

  29. C. Chen, T. Shih, C.J. Wu, Mater. Trans. 50, 2366–2372 (2009)

    Article  CAS  Google Scholar 

  30. P.K. Singh, P. Saini, K. Kumar, J. Phys. Conf. Ser. 1240, 01 (2016)

    Google Scholar 

  31. S. Kumai, K. Yoshida, Y. Higo, Acta Mater. 44, 2249–2257 (1996)

    Article  CAS  Google Scholar 

  32. J.M. Zhang, R.J. Perez, C.R. Wong, Mater. Sci. Eng. A 13, 325–389 (1994)

    Article  Google Scholar 

  33. P. Ruch, W. Beffort, O. Kleiner, Comput. Mater. Sci. 66, 2677–2685 (2006)

    CAS  Google Scholar 

  34. H.S. Lee, S.H. Hong, Mater. Sci. Technol. 19(8), 1057–1064 (2003)

    Article  CAS  Google Scholar 

  35. S. Bhaskar, M. Kumar, A. Patnaik, Trans. Indian Inst. Met. (2019). https://doi.org/10.1007/s12666-019-01819-5

    Article  Google Scholar 

  36. S. Elomari, R. Boukhili, M.D. Skibo, J. Masounave, J. Mater. Sci. 30, 30–37 (1995)

    Article  Google Scholar 

  37. K.P. Menard, Dynamic Mechanical Analysis: A Practical Introduction (CRC Press LLC, United States of America, 1999)

    Book  Google Scholar 

  38. D. Kumar, P.K. Singh, P. Saini, J. Compos. Mater. 56, 2433–2442 (2022)

    Article  CAS  Google Scholar 

  39. P. Saini, P.K. Singh, Surf. Topogr. Metrol. Prop. 10(2), 025007 (2022)

    Article  Google Scholar 

  40. P. Saini, P.K. Singh, Eng. Res. Express 4(1), 015004 (2022)

    Article  Google Scholar 

  41. A. Kumar, A. Patnaik, I.K. Bhat, SILICON 11, 1295–1311 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledged the Advanced Research Lab for Tribology and Material Research Centre of Malaviya National Institute of Technology Jaipur for characterization facilities and other infrastructure support.

Funding

No funding to declare.

Author information

Authors and Affiliations

Authors

Contributions

AK contributed to conceptualization, methodology, experimentation, original draft preparation. MK contributed to reviewing and editing for the final draft preparation.

Corresponding author

Correspondence to Ashiwani Kumar.

Ethics declarations

Conflict of interests

No competing interests.

Consent for Publication

The authors consented to publication in this journal.

Ethical Approval

The authors consented to participate in this journal.

Research Involving Human Participants and /or Animals

Not applicable

Informed Consent

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumar, M. Fracture Toughness and Thermal Investigations of Al 7075 — Cobalt Particulates Reinforced Alloy Composites Prepared Using High Vacuum Casting Method for Gear Applications: Proposed Thermal Conductivity and Fracture Toughness Modeling. Inter Metalcast 17, 1970–1981 (2023). https://doi.org/10.1007/s40962-022-00901-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-022-00901-x

Keywords

Navigation