Skip to main content
Log in

Recycling of Aluminium Matrix Composites (AMCs): A Review and the Way Forward

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The present review paper mainly focuses on the modifications in the characteristics of Aluminium Matrix Composites (AMCs) after recycling. The recycling of AMCs is one of the major issues considering the increasing usage of AMCs. The recycling of AMCs is mainly performed through the removal or retention of particles and base alloy. The recycling of AMCs with particle removal involves mechanical, gravitational, pressure-driven and chemical methods. The major issues associated with particle removal techniques are reduced metal yield, wastage of particles and reduced purity of remaining host metal. Researchers observed that the maximum recovered metal yield is up to 60% and reinforcements cannot be utilized in the recovered form for further applications due to the presence of impurities and contaminations. The recycling of AMCs without separation involves direct remelting and casting. The major challenge in this method is the generation of detrimental intermetallics which are deteriorating the properties and quality of composites. The Al4C3 and MgAl2O4 phases are generated during remelting of SiC- and Al2O3-reinforced AMCs, respectively. The intermetallics are formed due to the chemical interactions between the reinforcements and liquid alloy or the specific elements present in the matrix during remelting of AMCs. The results revealed that the weight fraction of the generated intermetallics is gradually increased after each remelting. Moreover, the mechanical and tribological properties of AMCs are deteriorated after successive remelting due to the brittle nature of intermetallics. In order to overcome the challenges during recycling of AMCs, future research directions are also presented.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. T. Bennett, P. Joyce, Material Powers: Cultural Studies, History and the Material Turn (Routledge, 2013)

    Book  Google Scholar 

  2. T.W. Clyne, D. Hull, An Introduction to Composite Materials (Cambridge University Press, 2019)

    Book  Google Scholar 

  3. P.K. Krishnan, Fabrication and application of aluminum metal matrix composites, in Advanced Manufacturing Techniques for Engineering and Engineered Materials. (IGI Global, Hershey, 2022), pp.133–151. https://doi.org/10.4018/978-1-7998-9574-9.ch008

    Chapter  Google Scholar 

  4. R. Arunachalam, P.K. Krishnan, Compressive response of aluminum metal matrix composites. Encycl. Mater. Compos. 1, 325–343 (2021). https://doi.org/10.1016/B978-0-12-803581-8.11818-1

    Article  Google Scholar 

  5. J. Grilo, V.H. Carneiro, J.C. Teixeira, H. Puga, Manufacturing methodology on casting-based aluminium matrix composites: systematic review. Metals 11(3), 436 (2021). https://doi.org/10.3390/met11030436

    Article  CAS  Google Scholar 

  6. A. Gnanavelbabu, K.T. Surendran, S. Kumar, Process optimization and studies on mechanical characteristics of AA2014/Al2O3 nanocomposites fabricated through ultrasonication assisted stir–squeeze casting. Inter. Metalcast. 16(2), 759–782 (2022). https://doi.org/10.1007/s40962-021-00634-3

    Article  CAS  Google Scholar 

  7. U. Aybarç, O. Ertuğrul, M.Ö. Seydibeyoğlu, Effect of Al2O3 particle size on mechanical properties of ultrasonic-assisted stir-casted Al A356 matrix composites. Inter. Metalcast. 15(2), 638–649 (2021). https://doi.org/10.1007/s40962-020-00490-7

    Article  CAS  Google Scholar 

  8. S.P. Dwivedi, A. Saxena, S. Sharma, Influence of nano-CuO on synthesis and mechanical behavior of spent alumina catalyst and grinding sludge reinforced aluminum based composite. Inter. Metalcast. 16(1), 292–303 (2022). https://doi.org/10.1007/s40962-02

    Article  CAS  Google Scholar 

  9. M. Shayan, B. Eghbali, B. Niroumand, Synthesis and characterization of Aa2024-Sio2 nanocomposites through the vortex method. Inter. Metalcast. 14, 1427–1440 (2021). https://doi.org/10.1007/s40962-021-00574-y

    Article  CAS  Google Scholar 

  10. J.S. Khalkho, S.V. Chevuri, B.K. Dagarapu, Evaluation of microstructure and mechanical properties of TiO2 reinforced aluminium composites developed through multi-step stir casting. Inter. Metalcast. (2022). https://doi.org/10.1007/s40962-022-00760-6

    Article  Google Scholar 

  11. V. Sharma, S. Kumar, Y. Dewang, P.K. Nagpal, Post-processing of stir casted Al–Si12Cu metal matrix composite by friction stir processing. Inter. Metalcast. (2022). https://doi.org/10.1007/s40962-021-00737-x

    Article  Google Scholar 

  12. R.S. Sadhasivam, K. Ramanathan, M. Ravichandran, C. Jayaseelan, Experimental investigations on microstructure, properties and workability behavior of zinc oxide reinforced Al–Si–Mg matrix composites. SILICON 14, 2175–2187 (2022). https://doi.org/10.1007/s12633-021-01012-8

    Article  CAS  Google Scholar 

  13. A. Abebe Emiru, D.K. Sinha, A. Kumar, A. Yadav, Fabrication and characterization of hybrid aluminium (Al6061) metal matrix composite reinforced with SiC, B4C and MoS2 via stir casting. Inter. Metalcast. (2022). https://doi.org/10.1007/s40962-022-00800-1

    Article  Google Scholar 

  14. D.M. Shinde, P. Sahoo, Influence of speed and sliding distance on the tribological performance of submicron particulate reinforced Al–12Si/1.5 wt% B4C composite. Inter. Metalcast. 16(2), 739–758 (2021). https://doi.org/10.1007/s40962-021-00636-1

    Article  CAS  Google Scholar 

  15. R. Mohammadi Badizi, M. Askari-Paykani, A. Parizad, H.R. Shahverdi, Effects of electromagnetic frequency and SiC nanoparticles on the microstructure refinement and mechanical properties of Al A357–1.5 wt% SiC nanocomposites. Inter. Metalcast. 12(3), 565–573 (2018). https://doi.org/10.1007/s40962-017-0194-z

    Article  CAS  Google Scholar 

  16. M. Alipour, R. Keshavamurthy, P.G. Koppad, A. Shakiba, N.C. Reddy, Investigation of microstructure and mechanical properties of cast Al–10Zn–3.5Mg–2.5Cu nanocomposite reinforced with graphene nano sheets produced by ultrasonic assisted stir casting. Inter. Metalcast. (2022). https://doi.org/10.1007/s40962-022-00826-5

    Article  Google Scholar 

  17. K.R. Kumar, K. Kiran, V.S. Sreebalaji, Micro structural characteristics and mechanical behaviour of aluminium matrix composites reinforced with titanium carbide. J. Alloys Compd. 723, 795–801 (2017). https://doi.org/10.1016/j.jallcom.2017.06.309

    Article  CAS  Google Scholar 

  18. R. Jojith, N. Radhika, Fabrication of LM 25/WC functionally graded composite for automotive applications and investigation of its mechanical and wear properties. J. Braz. Soc. Mech. Sci. Eng. 40(6), 1–13 (2018). https://doi.org/10.1007/s40430-018-1217-2

    Article  CAS  Google Scholar 

  19. Z. Li, T. Gao, Q. Xu, H. Yang, M. Han, X. Liu, Microstructure and mechanical properties of an AlN/Mg–Al composite synthesized by Al–AlN master alloy. Inter. Metalcast. 13(2), 384–391 (2019). https://doi.org/10.1007/s40962-018-0261-0

    Article  CAS  Google Scholar 

  20. F. He, E. Forthofer, Microstructure of high-performance pure Al/Nano-Si3N4 composites. Inter. Metalcast. 5(1), 71–72 (2011). https://doi.org/10.1007/BF03355512

    Article  Google Scholar 

  21. N. Ramadoss, K. Pazhanivel, A. Ganeshkumar, M. Arivanandhan, Microstructural, mechanical and corrosion behaviour of B4C/BN-reinforced Al7075 matrix hybrid composites. Inter. Metalcast. (2022). https://doi.org/10.1007/s40962-022-00791-z

    Article  Google Scholar 

  22. D. Zhou, F. Qiu, Q. Jiang, Simultaneously increasing the strength and ductility of nano-sized TiN particle reinforced Al–Cu matrix composites. Mater. Sci. Eng. A. 596, 98–102 (2014). https://doi.org/10.1016/j.msea.2013.12.049

    Article  CAS  Google Scholar 

  23. M. Manoj, G.R. Jinu, J.S. Kumar, V. Mugendiran, Effect of TiB2 particles on the morphological, mechanical and corrosion behaviour of Al7075 metal matrix composite produced using stir casting process. Inter. Metalcast. (2021). https://doi.org/10.1007/s40962-021-006

    Article  Google Scholar 

  24. S.D. Kumar, M. Ravichandran, A. Jeevika, B. Stalin, C. Kailasanathan, A. Karthick, Effect of ZrB2 on microstructural, mechanical and corrosion behaviour of aluminium (AA7178) alloy matrix composite prepared by the stir casting route. Ceram. Int. 47(9), 12951–12962 (2021). https://doi.org/10.1016/j.ceramint.2021.01.158

    Article  CAS  Google Scholar 

  25. V.S. Ayar, M.P. Sutaria, Comparative evaluation of ex situ and in situ method of fabricating aluminum/TiB2 composites. Inter. Metalcast. 15(3), 1047–1056 (2021). https://doi.org/10.1007/s40962-020-00539-7

    Article  CAS  Google Scholar 

  26. G.G. Holzschuh, D.S. Dörr, J.A.R. Moraes, S.B. Garcia, Metal matrix production: casting of recycled aluminum cans and incorporation of rice husk ash and magnesium. J. Compos. Mater. 54(22), 3229–3241 (2020). https://doi.org/10.1177/0021998320911964

    Article  CAS  Google Scholar 

  27. P.K. Krishnan, J.V. Christy, R. Arunachalam, A. Mourad, R. Muraliraja, M. Al-Maharbi, V. Murali, M.M. Chandra, Production of aluminum alloy-based metal matrix composites using scrap aluminum alloy and waste materials: Influence on microstructure and mechanical properties. J. Alloys Compd. 784, 1047–1061 (2019). https://doi.org/10.1016/j.jallcom.2019.01.115

    Article  CAS  Google Scholar 

  28. P. Chandrasekar, D. Nagaraju, The effect of electroless Ni–P-coated Al2O3 on mechanical and tribological properties of scrap Al alloy MMCs. Inter. Metalcast. (2022). https://doi.org/10.1007/s40962-022-00779-9

    Article  Google Scholar 

  29. J.V. Christy, R. Arunachalam, A. Mourad, P.K. Krishnan, S. Piya, M. Al-Maharbi, Processing, properties, and microstructure of recycled aluminum alloy composites produced through an optimized stir and squeeze casting processes. J. Manuf. Process. 59, 287–301 (2020). https://doi.org/10.1016/j.jmapro.2020.09.067

    Article  Google Scholar 

  30. A. Ahmad, M.A. Lajis, N.K. Yusuf, S.N. AB Rahim, Statistical optimization by the response surface methodology of direct recycled aluminum-alumina metal matrix composite (MMC-AlR) employing the metal forming process. Processes 8(7), 805 (2020). https://doi.org/10.3390/pr8070805

    Article  CAS  Google Scholar 

  31. S.L. Pramod, S.R. Bakshi, B.S. Murty, Aluminum-based cast in situ composites: a review. J. Mater. Eng. Perform. 24(6), 2185–2207 (2015). https://doi.org/10.1007/s11665-015-1424-2

    Article  CAS  Google Scholar 

  32. M. Emamy, M. Mahta, J. Rasizadeh, Formation of TiB2 particles during dissolution of TiAl3 in Al–TiB2 metal matrix composite using an in situ technique. Compos. Sci. Technol. 66(7–8), 1063–1066 (2006). https://doi.org/10.1016/j.compscitech.2005.04.016

    Article  CAS  Google Scholar 

  33. P. Senthil Kumar, V. Kavimani, K. Soorya Prakash, V. Murali Krishna, G. Shanthos Kumar, Effect of TiB2 on the corrosion resistance behavior of in situ Al composites. Inter. Metalcast. 14(1), 84–91 (2020). https://doi.org/10.1007/s40962-019-00330-3

    Article  CAS  Google Scholar 

  34. S.M. Dar, Y. Zhao, X. Kai, C. Guan, Z. Xu, Effect of external pressure on the microstructure and mechanical properties of in situ (ZrB2 + Al2O3/Al3Zr)/6016 nanocomposites. Inter. Metalcast. (2022). https://doi.org/10.1007/s40962-021-00736-y

    Article  Google Scholar 

  35. A. Kumar, P.K. Jha, M.M. Mahapatra, Abrasive wear behavior of in situ TiC reinforced with Al-4.5% Cu matrix. J. Mater. Eng. Perform. 23(3), 743–752 (2014). https://doi.org/10.1007/s11665-013-0836-0

    Article  CAS  Google Scholar 

  36. R.G. Zheng, Reddy, Kinetics of in-situ formation of AlN in Al alloy melts by bubbling ammonia gas. Metall. Mater. Trans. B 34(6), 793–804 (2003). https://doi.org/10.1007/s11663-003-0085-y

    Article  Google Scholar 

  37. T. Xu, G. Li, M. Xie, M. Liu, D. Zhang, Y. Zhao, G. Chen, X. Kai, Microstructure and mechanical properties of in-situ nano γ-Al2O3p/A356 aluminum matrix composite. J. Alloys Compd. 787, 72–85 (2019). https://doi.org/10.1016/j.jallcom.2019.02.045

    Article  CAS  Google Scholar 

  38. A.K. Yadav, V. Kumar, S. Mohan, Microstructure and mechanical properties of an in situ Al 356-Mg2Si-TiB2 hybrid composite prepared by stir and cooling slope casting. Inter. Metalcast. (2022). https://doi.org/10.1007/s40962-022-00804-x

    Article  Google Scholar 

  39. S. Ashkvary, S.G. Shabestari, F. Yavari, Effect of cooling rate on the microstructure and solidification characteristics of Al–20% Mg2Si in situ composites using computer-aided thermal analysis technique. Inter. Metalcast. (2022). https://doi.org/10.1007/s40962-022-00771-3

    Article  Google Scholar 

  40. M. Malaki, W. Xu, A.K. Kasar, P.L. Menezes, H. Dieringa, R.S. Varma, M. Gupta, Advanced metal matrix nanocomposites. Metals 9(3), 330 (2019). https://doi.org/10.3390/met9030330

    Article  CAS  Google Scholar 

  41. A. Schmidt, S. Siebeck, U. Götze, G. Wagner, D. Nestler, Particle-reinforced aluminum matrix composites (AMCs)—selected results of an integrated technology, user, and market analysis and forecast. Metals 8(2), 143 (2018). https://doi.org/10.3390/met8020143

    Article  CAS  Google Scholar 

  42. P.A. Kumar, P. Rohatgi, D. Weiss, 50 Years of foundry-produced metal matrix composites and future opportunities. Inter. Metalcast. 14, 291–317 (2019). https://doi.org/10.1007/s40962-019-00375-4

    Article  CAS  Google Scholar 

  43. Metal Matrix Composites Market, Metal Matrix Composites Market Research Report by Product, End use, and Region-Global Forecast to 2027—Cumulative Impact of COVID-19 (2022), https://www.reportlinker.com/p06161825/Metal-Matrix-Composites-Market-Research-Report-by-Product-by-End-Use-by-Region-Global-Forecast-to-Cumulative-Impact-of-COVID-19.html. Accessed on 15 May 2022.

  44. F. Nturanabo, L. Masu, J.B. Kirabira, Novel applications of aluminium metal matrix composites, in Aluminium Alloys and Composites. (IntechOpen, 2019). https://doi.org/10.5772/intechopen.81519

    Chapter  Google Scholar 

  45. W.C. Harrigan, Aluminum matrix composites 1970–2017, in Metal-Matrix Composites Innovations, Advances and Applications. (Springer, Cham, 2018). https://doi.org/10.1007/978-3-319-72853-7_1

    Chapter  Google Scholar 

  46. S.V. Prasad, R. Asthana, Aluminum metal-matrix composites for automotive applications: tribological considerations. Tribol. Lett. 17(3), 445–453 (2004). https://doi.org/10.1023/B:TRIL.0000044492.91991.f3

    Article  CAS  Google Scholar 

  47. BCC Research, Metal matrix composite global market report 2022 (2022). https://www.bccresearch.com/partners/tbrc-market-briefs/metal-matrix-composite-market.html. Accessed on 30 June 2022

  48. J.M. Herrera Ramirez, R. Perez Bustamante, C.A. Isaza Merino, A.M. Arizmendi Morquecho, Applications in the aeronautical and aerospace industries, in Unconventional Techniques for the Production of Light Alloys and Composites. (Springer, Cham, 2020), pp.183–195. https://doi.org/10.1007/978-3-030-48122-3_10

    Chapter  Google Scholar 

  49. N.E. Prasad, R.J. Wanhill, Aerospace Materials and Material Technologies (Springer, Singapore, 2017). https://doi.org/10.1007/978-981-10-2134-3

    Book  Google Scholar 

  50. A.T. Kermanidis, Aircraft aluminum alloys: applications and future trends, in Revolutionizing Aircraft Materials and Processes. (Springer, Cham, 2020), pp.21–55. https://doi.org/10.1007/978-3-030-35346-9_2

    Chapter  Google Scholar 

  51. Research and Markets, Aerospace Materials Market by Type (Aluminium Alloys, Steel Alloys, Titanium Alloys, Super Alloys, and Composite Materials), Aircraft Type (Commercial Aircraft, Business & General Aviation, Helicopters), and Region—Global Forecast to 2026 (2021), https://www.researchandmarkets.com/reports/5448466/aerospace-materials-market-by-type-aluminium#src-pos-26. Accessed on 20 May 2022.

  52. Aerospace Manufacturing, The soaring potential of AMCs (2020), https://www.aero-mag.com/aluminium-matrix-composites-040520/. Accessed on 25 June 2022.

  53. S.P. Rawal, Metal-matrix composites for space applications. JOM 53(4), 14–17 (2001). https://doi.org/10.1007/s11837-001-0139-z

    Article  CAS  Google Scholar 

  54. P.K. Rohatgi, P. Ajay Kumar, N.M. Chelliah, T.P.D. Rajan, Solidification processing of cast metal matrix composites over the last 50 years and opportunities for the future. JOM 72(8), 2912–2926 (2020). https://doi.org/10.1007/s11837-020-04253-x

    Article  CAS  Google Scholar 

  55. A.E. Krauklis, C.W. Karl, A.I. Gagani, J.K. Jørgensen, Composite material recycling technology—state-of-the-art and sustainable development for the 2020s. J. Compos. Sci. 5(1), 28 (2021). https://doi.org/10.3390/jcs5010028

    Article  CAS  Google Scholar 

  56. S. Prasadh, S. Suresh, V. Ratheesh, R. Wong, M. Gupta, Biocompatibility of metal matrix composites used for biomedical applications. Encycl. Mater. Compos. 1, 474–501 (2021). https://doi.org/10.1016/B978-0-12-803581-8.11834-X

    Article  Google Scholar 

  57. T.S.R.C. Murthy, J.K. Sonber, K. Sairam, S. Majumdar, V. Kain, Boron-based ceramics and composites for nuclear and space applications: synthesis and consolidation, in Handbook of Advanced Ceramics and Composites. (Springer, Cham, 2020), pp.703–738. https://doi.org/10.1007/978-3-030-16347-1_22

    Chapter  Google Scholar 

  58. U. Aybarç, M.Ö. Seydibeyoğlu, Recycling for a sustainable world with metal matrix composites, in Recycling of Plastics, Metals, and Their Composites. (CRC Press, 2021), pp.75–92. https://doi.org/10.1201/9781003148760

    Chapter  Google Scholar 

  59. Y. Nishida, Introduction to Metal Matrix Composites: Fabrication and Recycling (Springer, 2013). https://doi.org/10.1007/978-4-431-54237-7

    Book  Google Scholar 

  60. Y. Nishida, N. Izawa, Y. Kuramasu, Recycling of aluminum matrix composites. Metall. Mater. Trans. A 30(3), 839–844 (1999). https://doi.org/10.1007/s11661-999-0077-x

    Article  Google Scholar 

  61. D.M. Schuster, M.D. Skibo, R.S. Bruski, R. Provencher, G. Riverin, The recycling and reclamation of metal-matrix composites. JOM 45(5), 26–30 (1993). https://doi.org/10.1007/BF03223214

    Article  CAS  Google Scholar 

  62. P.K. Krishnan, R. Arunachalam, Physical and mechanical properties of recycled metal matrix composites, in Recycling of Plastics, Metals, and their Composites. (CRC Press, Berlin, 2021), pp.141–161. https://doi.org/10.1201/9781003148760

    Chapter  Google Scholar 

  63. Y. Nishida, Recycling of metal matrix composites. Adv. Eng. Mater. 3(5), 315–317 (2001). https://doi.org/10.1002/1527-2648(200105)3:5%3c315::AID-ADEM315%3e3.0.CO;2-7

    Article  CAS  Google Scholar 

  64. A. Sharma, B. Ahn, Recycling of aluminum alloy from Al-Cu metal matrix composite reinforced with SiC particulates. Korean J. Mater. Res. 28(12), 691–695 (2018). https://doi.org/10.3740/MRSK.2018.28.12.691

    Article  CAS  Google Scholar 

  65. Y. Yang, R. Boom, B. Irion, D.J. van Heerden, P. Kuiper, H. de Wit, Recycling of composite materials. Chem. Eng. Process. 51, 53–68 (2012). https://doi.org/10.1016/j.cep.2011.09.007

    Article  CAS  Google Scholar 

  66. A. Shishkin, V. Mironov, D. Goljandin, V. Lapkovsky, Recycling of Al-WB composite material. Key Eng. Mater. 527, 143–147 (2013). https://doi.org/10.4028/www.scientific.net/KEM.527.143

    Article  CAS  Google Scholar 

  67. J.B. Fogagnolo, E.M. Ruiz-Navas, M.A. Simón, M.A. Martinez, Recycling of aluminium alloy and aluminium matrix composite chips by pressing and hot extrusion. J. Mater. Process. Technol. 143, 792–795 (2003). https://doi.org/10.1016/S0924-0136(03)00380-7

    Article  CAS  Google Scholar 

  68. R.A. Ilyas, S.M. Sapuan, A.K. Jailani, A.H.M. Yusof, M.N. Norizan, M.N.F. Norrrahim, M.S.N. Atikah, A. Atiqah, E. Bayraktar, Introduction to recycling of polymers and metal composites, in Recycling of Plastics, Metals, and their Composites. (CRC Press, 2021), pp.1–35. https://doi.org/10.1201/9781003148760

    Chapter  Google Scholar 

  69. V. Gergely, H.P. Degischer, T.W. Clyne, Recycling of MMCs and production of metallic foams. Compr. Compos. Mater. 3, 797–820 (2000). https://doi.org/10.1016/B0-08-042993-9/00205-9

    Article  Google Scholar 

  70. S. Das, K. Das, S. Das, Recycling of aluminium metal matrix composite, in Emerging Trends in Mineral Processing and Extractive Metallurgy. (Allied Publishers, India, 2005), p.431

    Google Scholar 

  71. N. Sun, Z. Wang, L. Guo, L. Wang, Z. Guo, Efficient separation of reinforcements and matrix alloy from aluminum matrix composites by supergravity technology. J. Alloys Compd. 843, 155814 (2020). https://doi.org/10.1016/j.jallcom.2020.155814

    Article  CAS  Google Scholar 

  72. M. Mizumoto, T. Ohgai, A. Kagawa, Novel separation technique of particle reinforced metal matrix composites by fused deposition method. Mater. Sci. Forum 539, 1028–1032 (2007). https://doi.org/10.4028/www.scientific.net/MSF.539-543.1028

    Article  Google Scholar 

  73. G.L. Zhu, Y.P. Xiao, Y.X. Yang, J. Wang, B.D. Sun, R. Boom, Recycling of aluminum from fibre metal laminates. J. Shanghai Jiaotong Univ. (Sci.) 17(3), 263–267 (2012). https://doi.org/10.1007/s12204-012-1265-1

    Article  Google Scholar 

  74. H. Sano, S. Kato, T. Motomura, T. Fujisawa, Closed recycling process for Al-based composite materials. Mater. Trans. 46(12), 3067–3072 (2005). https://doi.org/10.2320/matertrans.46.3067

    Article  CAS  Google Scholar 

  75. T.A. Utigard, R.R. Roy, K. Friesen, The roles of molten salts in the treatment of aluminum. Can. Metall. Q. 40(3), 327–334 (2001). https://doi.org/10.1179/cmq.2001.40.3.327

    Article  CAS  Google Scholar 

  76. T. Hiraki, T. Miki, K. Nakajima, K. Matsubae, S. Nakamura, T. Nagasaka, Thermodynamic analysis for the refining ability of salt flux for aluminum recycling. Materials 7(8), 5543–5553 (2014). https://doi.org/10.3390/ma7085543

    Article  Google Scholar 

  77. D. Madarasz, I. Budai, G. Kaptay, Fabrication of SiC-particles-shielded Al spheres upon recycling Al/SiC composites. Metall. Mater. Trans. A 42(6), 1439–1443 (2011). https://doi.org/10.1007/s11661-011-0691-2

    Article  CAS  Google Scholar 

  78. K.R. Ravi, R.M. Pillai, B.C. Pai, M. Chakraborty, Separation of matrix alloy and reinforcement from aluminum metal matrix composites scrap by salt flux addition. Bull. Mater. Sci. 30(4), 393–398 (2007). https://doi.org/10.1007/s12034-007-0063-0

    Article  CAS  Google Scholar 

  79. G. Gyarmati, G. Fegyverneki, M. Tokár, T. Mende, The effects of rotary degassing treatments on the melt quality of an Al–Si casting alloy. Inter. Metalcast. 15(1), 141–151 (2021). https://doi.org/10.1007/s40962-020-00428-z

    Article  CAS  Google Scholar 

  80. M. Bhaskar, G. Anand, T. Nallusamy, M. Koilraj, P. Suresh, Recycling of aluminum chips in die casting foundry. Inter. Metalcast. 16(3), 1575–1583 (2022). https://doi.org/10.1007/s40962-021-00707-3

    Article  CAS  Google Scholar 

  81. A. Kudyba, S. Akhtar, I. Johansen, J. Safarian, Aluminum recovery from white aluminum dross by a mechanically activated phase separation and remelting process. JOM 73(9), 2625–2634 (2021). https://doi.org/10.1007/s11837-021-04730-x

    Article  CAS  Google Scholar 

  82. A. Dhinakar, P.Y. Lu, N.K. Tang, J.K. Chen, Iron reduction in 356 secondary aluminum alloy by Mn and Cr addition for sediment separation. Inter. Metalcast. 15(1), 182–192 (2021). https://doi.org/10.1007/s40962-020-00433-2

    Article  CAS  Google Scholar 

  83. R.P. Barot, V.S. Ayar, Casting simulation and defect identification of geometry varied plates with experimental validation. Mater. Today Proc. 26(2), 2754–2762 (2020). https://doi.org/10.1016/j.matpr.2020.02.575

    Article  CAS  Google Scholar 

  84. M.M. Jalilvand, N.T. Bagh, M. Akbarifar, M. Divandari, A new insight to dynamic oxidation of molten metals by the parametric study of oxide/metal/oxide sandwich formation. Inter. Metalcast. 14(4), 949–961 (2020). https://doi.org/10.1007/s40962-019-00395-0

    Article  Google Scholar 

  85. N. Taheri Bagh, M. Divandari, M. Shahmiri, M. Akbarifar, Characteristics of dynamically formed oxide films in Al–Zn melt. Inter. Metalcast. 15(3), 747–762 (2021). https://doi.org/10.1007/s40962-020-00501-7

    Article  CAS  Google Scholar 

  86. T. Gao, Z. Li, Y. Zhang, J. Qin, X. Liu, Phase evolution of β-Al5FeSi during recycling of Al–Si–Fe alloys by Mg melt. Inter. Metalcast. 13(2), 473–478 (2019). https://doi.org/10.1007/s40962-018-0279-3

    Article  CAS  Google Scholar 

  87. J.K. Odusote, P.A. Ajayi, Mechanical properties and microstructure of recycled aluminum cast with zinc and copper additions. Inter. Metalcast. 10(4), 483–490 (2016). https://doi.org/10.1007/s40962-016-0060-4

    Article  Google Scholar 

  88. R.P. Barot, M.P. Sutaria, Effect of casting thickness on mechanical properties of AlSi5Cu3 Aluminium alloy. Mater. Today Proc. 62(6), 3330–3335 (2022). https://doi.org/10.1016/j.matpr.2022.04.243

    Article  CAS  Google Scholar 

  89. G.K. Sigworth, R.J. Donahue, The metallurgy of aluminum alloys for structural high-pressure die castings. Inter. Metalcast. 15(3), 1031–1046 (2021). https://doi.org/10.1007/s40962-020-00535-x

    Article  CAS  Google Scholar 

  90. R. Gallo, I. Soto, Improving competitiveness through in-house aluminum chip melting: a case study. AFS Trans. 119, 1–8 (2011)

    Google Scholar 

  91. L.A. Godlewski, J.W. Zindel, Capability study of a filtration process to predict aluminum melt quality. AFS Trans. 109, 555–565 (2001)

    CAS  Google Scholar 

  92. H. Liu, F. Samuel, Recycling an Al-Si-Mg-SiC/10p composite. AFS Trans. 101, 873–878 (1993)

    CAS  Google Scholar 

  93. R.P. Barot, M.P. Sutaria, Effect of multiple remelting on behaviour of AlSi5Cu3 aluminium alloy. Mater. Today Proc. 62(6), 4046–4051 (2022). https://doi.org/10.1016/j.matpr.2022.04.608

    Article  CAS  Google Scholar 

  94. M. Uludağ, R. Cetin, D. Dişpinar, M. Tiryakioğlu, On the interpretation of melt quality assessment of A356 aluminum alloy by the reduced pressure test: the bifilm index and its physical meaning. Inter. Metalcast. 12(4), 853–860 (2018). https://doi.org/10.1007/s40962-018-0217-4

    Article  CAS  Google Scholar 

  95. S.W. Hudson, D. Apelian, Inclusion detection in molten aluminum: current art and new avenues for in situ analysis. Inter. Metalcast. 10(3), 289–305 (2016). https://doi.org/10.1007/s40962-016-0030-x

    Article  Google Scholar 

  96. M. Riestra, A. Bjurenstedt, T. Bogdanoff, E. Ghassemali, S. Seifeddine, Complexities in the assessment of melt quality. Inter. Metalcast. 12(3), 441–448 (2018). https://doi.org/10.1007/s40962-017-0179-y

    Article  Google Scholar 

  97. E. Erzi, M. Tiryakioğlu, A simple procedure to determine incoming quality of aluminum alloy ingots and its application to A356 alloy ingots. Inter. Metalcast. 14(4), 999–1004 (2020). https://doi.org/10.1007/s40962-020-00414-5

    Article  Google Scholar 

  98. K.K. Chawla, Repair and recycling of composites, in Composite Materials. (Springer, Cham, 2019), pp.517–528. https://doi.org/10.1007/978-3-030-28983-6_16

    Chapter  Google Scholar 

  99. A. Atiqah, N. Ismail, K.K. Lim, A. Jalar, M.A. Bakar, M.A. Maleque, R.A. Ilyas, A.B.M. Supian, Properties of recycled metal matrix composites, in Recycling of Plastics, Metals, and their Composites. (CRC Press, 2021), pp.93–107. https://doi.org/10.1201/9781003148760

    Chapter  Google Scholar 

  100. E.S. Prusov, A.A. Panfilov, Influence of repeated remeltings on formation of structure of castings from aluminium matrix composite alloys, in Metal 2013: Proceedings of the 22nd International conference on metallurgy and materials, vol. 1 (2013), pp 1152–1156. http://konsys-t.tanger.cz/files/proceedings/12/reports/1872.pdf

  101. A. Klasik, J. Sobczak, K. Pietrzak, Changes in properties of aluminium matrix composite reinforced with SiC particles after multiple remelting. Mater. Res. Innov. 15(1), 249–252 (2011). https://doi.org/10.1179/143307511X12858957673716

    Article  Google Scholar 

  102. A. Klasik, J. Sobczak, N. Sobczak, A. Wojceiechoski, Effect of multiple remelting on selected properties of dispersed reinforced aluminum matrix composite. J. KONES 15(3), 233–238 (2008)

    Google Scholar 

  103. M. Maj, A. Wojciechowski, J. Sobczak, K. Pietrzak, A. Klasik, Fatigue life and microstructure after multiple remelting of A359 matrix composites reinforced with SiC particles. Arch. Metall. Mater. 61(4), 2123–2128 (2016). https://doi.org/10.1515/amm-2016-0340

    Article  CAS  Google Scholar 

  104. D. Mandal, S. Viswanathan, Effect of re-melting on particle distribution and interface formation in SiC reinforced 2124Al matrix composite. Mater. Charact. 86, 21–27 (2013). https://doi.org/10.1016/j.matchar.2013.09.008

    Article  CAS  Google Scholar 

  105. M. Łągiewka, C. Kolmasiak, Composite centrifugal castings after remelting. Metalurgija 60(3–4), 441–443 (2021)

    Google Scholar 

  106. T. Fan, D. Zhang, Z. Shi, R. Wu, T. Shibayangai, M. Naka, H. Mori, The effect of Si upon the interfacial reaction characteristics in SiCp/Al-Si system composites during multiple-remelting. J. Mater. Sci. 34(21), 5175–5180 (1999). https://doi.org/10.1023/A:1004703711508

    Article  CAS  Google Scholar 

  107. T. Fan, D. Zhang, Z. Shi, R. Wu, An in situ method to evaluate the interfacial reaction during multiple remelting. J. Mater. Sci. Lett. 20(11), 1001–1003 (2001). https://doi.org/10.1023/A:1010935703186

    Article  CAS  Google Scholar 

  108. T. Fan, Z. Shi, D. Zhang, R. Wu, The interfacial reaction characteristics in SiC/Al composite above liquidus during remelting. Mater. Sci. Eng. A 257(2), 281–286 (1998). https://doi.org/10.1016/S0921-5093(98)00855-7

    Article  Google Scholar 

  109. T. Fan, D. Zhang, G. Yang, T. Shibayanagi, M. Naka, T. Sakata, H. Mori, Chemical reaction of SiCp/Al composites during multiple remelting. Compos. A Appl. Sci. Manuf. 34(3), 291–299 (2003). https://doi.org/10.1016/S1359-835X(03)00029-0

    Article  CAS  Google Scholar 

  110. G. Yang, T. Fan, D. Zhang, Interfacial reaction of Al matrix composites reinforced with TiO2-coated SiC particles during remelting. Mater. Lett. 58(10), 1546–1552 (2004). https://doi.org/10.1016/j.matlet.2003.10.024

    Article  CAS  Google Scholar 

  111. T.X. Fan, G.J. Yang, J.Q. Chen, D. Zhang, Z. Shi, T. Shibayanagi, M. Naka, Recycling mechanism of discontinuously reinforced Al matrix composites. Mater. Sci. Forum 502, 205–210 (2005). https://doi.org/10.4028/www.scientific.net/MSF.502.205

    Article  CAS  Google Scholar 

  112. G. Yang, T. Fan, D. Zhang, Chemical reaction in Al matrix composite reinforced with SiCp coated by SnO2. J. Mater. Sci. 39(11), 3689–3694 (2004). https://doi.org/10.1023/B:JMSC.0000030722.14054.e2

    Article  CAS  Google Scholar 

  113. T. Fan, D. Zhang, R. Wu, T. Shibayanagi, M. Naka, Effect of Ti upon the interfacial reaction in SiCp/Al composites during multiple remelting above the liquidus. J. Mater. Sci. Lett. 21(15), 1157–1161 (2002). https://doi.org/10.1023/A:1016547830345

    Article  CAS  Google Scholar 

  114. A. Klasik, K. Pietrzak, K. Makowska, J. Sobczak, D. Rudnik, A. Wojciechowski, Wear resistance of aluminium matrix composites reinforced with Al2O3 particles after multiple remelting. J. Mater. Eng. Perform. 25(8), 3084–3090 (2016). https://doi.org/10.1007/s11665-015-1870-x

    Article  CAS  Google Scholar 

  115. K. Pietrzak, N. Sobczak, J.J. Sobczak, A. Klasik, A. Kudyba, P. Darłak, P. Długosz, A. Wojciechowski, E. Sienicki, Stability of metal-ceramic slurry after multiple remelting of A359 aluminium alloy based composite reinforced with Al2O3 particles. Trans. Foundry Res. Inst. 57(2), 69–84 (2017). https://doi.org/10.7356/iod.2017.07

    Article  CAS  Google Scholar 

  116. K. Pietrzak, A. Klasik, M. Maj, J. Sobczak, A. Wojciechowski, Microstructure and fatigue life of the A359 alloy reinforced with Al2O3 after multiple remelting. Arch. Foundry Eng. 18(2), 39–44 (2018). https://doi.org/10.24425/122500

    Article  CAS  Google Scholar 

  117. W.M. Zhong, G. L’esperance, M. Suéry, Effect of current Mg concentration on interfacial reactions during remelting of Al–Mg (5083)/Al2O3p composites. Mater. Charact. 49(2), 113–119 (2002). https://doi.org/10.1016/S1044-5803(02)00359-5

    Article  CAS  Google Scholar 

  118. M. Malaki, A. Fadaei Tehrani, B. Niroumand, M. Gupta, Wettability in metal matrix composites. Metals 11(7), 1034 (2021). https://doi.org/10.3390/met11071034

    Article  CAS  Google Scholar 

  119. K. Pietrzak, A. Klasik, K. Makowska, J. Sobczak, A. Wojciechowski, D. Rudnik, E. Sienicki, Structural determinants of the mechanical properties of A359 + Al2O3 composites after multiple remelting. Trans. Foundry Res. Inst. 56(2), 87–112 (2016). https://doi.org/10.7356/iod.2016.08

    Article  CAS  Google Scholar 

  120. T. Fan, D. Zhang, G. Yang, T. Shibayanagi, M. Naka, Fabrication of in situ Al2O3/Al composite via remelting. J. Mater. Process. Technol. 142(2), 556–561 (2003). https://doi.org/10.1016/S0924-0136(03)00659-9

    Article  CAS  Google Scholar 

  121. M. Łągiewka, Z. Konopka, Properties of AlSi9Mg alloy matrix composite reinforced with short carbon fibre after remelting. Arch. Foundry Eng. 15(3), 39–42 (2015). https://doi.org/10.1515/afe-2015-0056

    Article  Google Scholar 

  122. R.N. Rai, A.K. Rao, G.L. Dutta, M. Chakraborty, Forming behaviour of Al–TiC in situ composites. Mater. Sci. Forum 765, 418–422 (2013). https://doi.org/10.4028/www.scientific.net/MSF.765.418

    Article  CAS  Google Scholar 

  123. R. Yang, Z. Zhang, Y. Zhao, G. Chen, M. Liu, L. Jiao, L. Chen, Microstructure-property analysis of ZrB2/6061Al hierarchical nanocomposites fabricated by direct melt reaction. Mater. Charact. 112, 51–59 (2016). https://doi.org/10.1016/j.matchar.2015.12.012

    Article  CAS  Google Scholar 

  124. V.S. Ayar, M.P. Sutaria, Development and characterization of in situ AlSi5Cu3/TiB2 composites. Inter. Metalcast. 14(1), 59–68 (2020). https://doi.org/10.1007/s40962-019-00328-x

    Article  CAS  Google Scholar 

  125. A. Changizi, A. Kalkanli, N. Sevinc, Production of in situ aluminum–titanium diboride master alloy formed by slag–metal reaction. J. Alloys Compd. 509(2), 237–240 (2011). https://doi.org/10.1016/j.jallcom.2010.08.089

    Article  CAS  Google Scholar 

  126. G.S. Vinod Kumar, B.S. Murty, M. Chakraborty, Effect of TiAl3 particles size and distribution on their settling and dissolution behaviour in aluminium. J. Mater. Sci. 45(11), 2921–2929 (2010). https://doi.org/10.1007/s10853-010-4284-z

    Article  CAS  Google Scholar 

  127. G.K. Sigworth, T.A. Kuhn, Grain refinement of aluminum casting alloys. Inter. Metalcast. 1(1), 31–40 (2007). https://doi.org/10.1007/BF03355416

    Article  CAS  Google Scholar 

  128. G. Gautam, A. Mohan, Wear and friction of AA5052-Al3Zr in situ composites synthesized by direct melt reaction. J. Tribol. 138(2), 021602 (2016). https://doi.org/10.1115/1.4031401

    Article  CAS  Google Scholar 

  129. S. Dayanand, S.B. Boppana, V. Auradi, M. Nagaral, M. Udaya Ravi, Evaluation of wear properties of heat-treated Al–AlB2 in-situ metal matrix composites. J. Bio. Tribo. Corros. 7(2), 1–11 (2021). https://doi.org/10.1007/s40735-021-00476-w

    Article  Google Scholar 

  130. G. Gautam, N. Kumar, A. Mohan, S. Mohan, J.P. Davim, A comparative assessment on microstructure, mechanical and tribological behaviour of light aluminium–trialuminide composites. Inter. Metalcast. (2022). https://doi.org/10.1007/s40962-022-00810-z

    Article  Google Scholar 

  131. I. Barin, G. Platzki, Thermochemical Data of Pure Substances, vol. 304(334) (Weinheim: VCh., 1989), p 1117. https://doi.org/10.1002/9783527619825

Download references

Acknowledgement

The authors gratefully acknowledge Charotar University of Science and Technology (CHARUSAT) for providing technical support and facilities.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was contributed by RPB; Writing—original draft preparation, was contributed by RPB; Writing—review and editing, was contributed by RPD, MPS; Supervision was contributed by RPD, MPS.

Corresponding author

Correspondence to M. P. Sutaria.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article. No funding was received for conducting this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barot, R.P., Desai, R.P. & Sutaria, M.P. Recycling of Aluminium Matrix Composites (AMCs): A Review and the Way Forward. Inter Metalcast 17, 1899–1916 (2023). https://doi.org/10.1007/s40962-022-00905-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-022-00905-7

Keywords

Navigation