Skip to main content
Log in

Effect of External Pressure on the Microstructure and Mechanical Properties of In Situ (ZrB2+Al2O3/Al3Zr)/6016 Nanocomposites

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In this study, effect of external pressure on the microstructure and mechanical properties of in situ (ZrB2+Al2O3/Al3Zr)/6016 composites, synthesized under electromagnetic field, is investigated using scanning electron microscopy, X-ray diffraction and tensile testing. It is found that the application of 0.5MPa external pressure can promote uniformity in shape and slight decrease in α-Al grain size due to pressure-assisted faster solidification rate, and thus results in strengthening of both the 6016 alloy and in situ (ZrB2+Al2O3/Al3Zr)/6016 nanocomposite. It is also found that the external pressure can inhibit the growth of in situ reinforcement particles present in (ZrB2+Al2O3/Al3Zr)/6016 nanocomposite, restricting their size to lower aspect ratios. The improved strengthening of the composite matrix contributes to the simultaneously higher yield strength (YS), ultimate tensile strength (UTS), %elongation and hardness. The work hardening rate and improvement in mechanical properties are discussed in terms of reinforcement particles’ size and morphology of tensile fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. P.A. Kumar, P. Rohatgi, D. Weiss, Int. J. Metalcast. 14, 291–317 (2020). https://doi.org/10.1007/s40962-019-00375-4

    Article  CAS  Google Scholar 

  2. A.M. Samuel, H. Liu, F.H. Samuel, J. Mater. Sci. 28, 6785–6798 (1993). https://doi.org/10.1007/BF00356432

    Article  CAS  Google Scholar 

  3. S. Gowri, F.H. Samuel, Metall. Trans. A 23, 3369–3376 (1992). https://doi.org/10.1007/BF02663446

    Article  Google Scholar 

  4. F.M. Yarandi, P.K. Rohatgi, S. Ray, J. Mater. Eng. Perf. 2, 359–364 (1993). https://doi.org/10.1007/BF02648823

    Article  CAS  Google Scholar 

  5. M. Zolfaghari, M. Azadi, M. Azadi, Int. J. Metalcast. 15, 152–168 (2021). https://doi.org/10.1007/s40962-020-00437-y

    Article  CAS  Google Scholar 

  6. R. Gecu, A. Karaaslan, Int. J. Metalcast. 13, 311–319 (2019). https://doi.org/10.1007/s40962-018-0253-0

    Article  CAS  Google Scholar 

  7. P. Garg, A. Jamwal, D. Kumar, K.K. Sadasivunic, C.M. Hussain, P. Gupta, J. Mater. Res. Tech. 8, 4924–4939 (2019). https://doi.org/10.1016/j.jmrt.2019.06.028

    Article  CAS  Google Scholar 

  8. H.M. Enginsoy, E. Bayraktar, D. Katundi, F. Gatamorta, I. Miskioglu, Compos. Part B. 194, 108040 (2020). https://doi.org/10.1016/j.compositesb.2020.108040

    Article  CAS  Google Scholar 

  9. S. Zhao, H. Zhang, Z. Cui, D. Chen, Z. Chen, Mater. Charac. 178, 111243 (2021). https://doi.org/10.1016/j.matchar.2021.111243

    Article  CAS  Google Scholar 

  10. S. Baazamat, M. Tajally, E. Borhani, J. Alloys Compd. 653, 39–46 (2015). https://doi.org/10.1016/j.jallcom.2015.08.267

    Article  CAS  Google Scholar 

  11. M.M. Jalilvand, Y. Mazaheri, A. Heidarpour, M. Roknian, Surf. Coat. Tech. 360, 121–132 (2019). https://doi.org/10.1016/j.surfcoat.2018.12.126

    Article  CAS  Google Scholar 

  12. K. Ozturk, R. Gecu, A. Karaaslan, Cer. Inter. 47, 18274–18285 (2021). https://doi.org/10.1016/j.ceramint.2021.03.147

    Article  CAS  Google Scholar 

  13. M. Wang, Y. Li, B. Chen, D. Shi, J. Umeda, K. Kondoh, J. Shen, Mater. Sci. Eng. A 808, 140893 (2021). https://doi.org/10.1016/j.msea.2021.140893

    Article  CAS  Google Scholar 

  14. T. Han, F. Wang, J. Li, N. Zhao, C. He, Compos. Part B. 212, 108700 (2021). https://doi.org/10.1016/j.compositesb.2021.108700

    Article  CAS  Google Scholar 

  15. S.R. Bakshi, D. Lahiri, A. Agarwal, Int. Mater. Rev. 55, 41–64 (2010). https://doi.org/10.1179/095066009X12572530170543

    Article  CAS  Google Scholar 

  16. S. Mondal, Metals Mater. Inter. 27, 2188–2204 (2021). https://doi.org/10.1007/s12540-020-00750-5

    Article  CAS  Google Scholar 

  17. M. Khoshghadam-Pireyousefan, R. Rahmanifard, L. Orovcik, P. Svec, V. Klemm, Mater. Sci. Eng. A 772, 138820 (2020). https://doi.org/10.1016/j.msea.2019.138820

    Article  CAS  Google Scholar 

  18. X. Kai, S. Huang, L. Wu, R. Tao, Y. Peng, Z. Mao, F. Chen, G. Li, G. Chen, Y. Zhao, J. Mater. Sci. Tech. 35, 2107–2114 (2019). https://doi.org/10.1016/j.jmst.2019.04.020

    Article  CAS  Google Scholar 

  19. X. Kai, K. Tian, C. Wang, L. Jiao, G. Chen, Y. Zhao, J. Alloys Compd. 668, 121–127 (2016). https://doi.org/10.1016/j.jallcom.2016.01.152

    Article  CAS  Google Scholar 

  20. L.Y. Chen, J.Y. Peng, J.Q. Xu, H. Choi, X.C. Li, Scripta Mater. 69, 634–637 (2013). https://doi.org/10.1016/j.scriptamat.2013.07.016

    Article  CAS  Google Scholar 

  21. Y. Tsunekawa, H. Suzuki, Y. Genma, Mater. Des. 22, 467–472 (2001). https://doi.org/10.1016/S0261-3069(00)00079-0

    Article  CAS  Google Scholar 

  22. Y. Ren, W. Ma, K. Wei, W. Yu, Y. Dai, K. Morita, Vaccum 109, 82–85 (2014). https://doi.org/10.1016/j.vacuum.2014.06.026

    Article  CAS  Google Scholar 

  23. H. Xu, X. Jian, T.T. Meek, Q. Han, Mater. Lett. 58, 3669–3673 (2004). https://doi.org/10.1016/j.matlet.2004.02.055

    Article  CAS  Google Scholar 

  24. D.G. Eskin, Mater. Sci. Tech. 33, 636–645 (2016). https://doi.org/10.1080/02670836.2016.1162415

    Article  CAS  Google Scholar 

  25. I. Kaldre, A. Bojarevics, JOM 72, 2892–2897 (2020). https://doi.org/10.1007/s11837-020-04160-1

    Article  CAS  Google Scholar 

  26. L. Luo, L. Luo, Y. Su, L. Su, L. Wang, R. Chen, J. Guo, H. Fu, J. Mater. Sci. Tech. 79, 1–14 (2021). https://doi.org/10.1016/j.jmst.2020.11.035

    Article  CAS  Google Scholar 

  27. J. Barbosa, H. Puga, J. Mater. Process. Tech. 244, 150–156 (2017). https://doi.org/10.1016/j.jmatprotec.2017.01.031

    Article  CAS  Google Scholar 

  28. N.A. Mufti, P.D. Webster, T.A. Dean, Mater. Sci. Tech. 11, 803–809 (2013). https://doi.org/10.1179/mst.1995.11.8.803

    Article  Google Scholar 

  29. A. Maleki, B. Niroumand, A. Shafyei, Mater. Sci. Eng. A 428, 135–140 (2006). https://doi.org/10.1016/j.msea.2006.04.099

    Article  CAS  Google Scholar 

  30. P. Fu, A.A. Luo, H. Jiang, L. Peng, Y. Yu, C. Zhai, A.K. Sachdev, J. Mater. Process. Tech. 205, 224–234 (2008). https://doi.org/10.1016/j.jmatprotec.2007.11.111

    Article  CAS  Google Scholar 

  31. S.N. Chen, W. Yang, H. Yu, Y.L. Zhang, J. Alloys Compd. 611, 1–6 (2014). https://doi.org/10.1016/j.jallcom.2014.05.033

    Article  CAS  Google Scholar 

  32. X. Wu, H. Zhang, Z. Ma, L. Jia, H. Zhang, J. Mater. Eng. Perf. 27, 483–491 (2018). https://doi.org/10.1007/s11665-017-2920-3

    Article  CAS  Google Scholar 

  33. Z. Fang, Y. Zhao, X. Kai, R. Tao, C. Xia, Z. Zhang, Y. Sun, Mater. Res. Exp. 7, 026508 (2020). https://doi.org/10.1088/2053-1591/ab6e34

    Article  CAS  Google Scholar 

  34. X. Kai, Y. Zhao, A. Wang, C. Wang, Z. Mao, Compos. Sci. Tech. 116, 1–8 (2015). https://doi.org/10.1016/j.compscitech.2015.05.006

    Article  CAS  Google Scholar 

  35. B. Zhang, S.L. Cockcroft, D.M. Maijer, J.D. Zhu, A.B. Phillion, JOM 57, 36–43 (2005). https://doi.org/10.1007/s11837-005-0025-1

    Article  CAS  Google Scholar 

  36. L. Yao, S. Cockcroft, J. Zhu, C. Reilly, Metall. Mater. Trans. A 42, 4137–4148 (2011). https://doi.org/10.1007/s11661-011-0811-z

    Article  CAS  Google Scholar 

  37. J. Campbell, Mater. Sci. Tech. 31, 565–572 (2014). https://doi.org/10.1179/1743284714Y.0000000581

    Article  CAS  Google Scholar 

  38. W. Dai, S. Wu, S. Lü, C. Lin, Mater. Sci. Eng. A 538, 320–326 (2012). https://doi.org/10.1016/j.msea.2012.01.051

    Article  CAS  Google Scholar 

  39. W. Jiang, Z. Fan, D. Liao, D. Liu, Z. Zhao, X. Dong, Mater. Des. 32, 926–934 (2011). https://doi.org/10.1016/j.matdes.2010.08.015

    Article  CAS  Google Scholar 

  40. Q. Hu, W. Guo, H. Zhao, Mater. Sci. Eng. A 819, 141470 (2021). https://doi.org/10.1016/j.msea.2021.141470

    Article  CAS  Google Scholar 

  41. J.J. Sobczak, L. Drenchev, R. Asthana, Int. J. Cast Met. Res. 25, 1–14 (2013). https://doi.org/10.1179/1743133611Y.0000000016

    Article  CAS  Google Scholar 

  42. A.F. Ilkhchy, M. Jabbari, P. Davami, Int. Commun. Heat Mass Transf. 39, 705–712 (2012). https://doi.org/10.1016/j.icheatmasstransfer.2012.04.001

    Article  CAS  Google Scholar 

  43. A. Jahangiri, S.P.H. Marashi, M. Mohammadaliha, V. Ashoftea, J. Mater. Process. Tech. 245, 1–6 (2017). https://doi.org/10.1016/j.jmatprotec.2017.02.005

    Article  CAS  Google Scholar 

  44. M. Masoumi, H. Hu, Mater. Sci. Eng. A 528, 3589–3593 (2011). https://doi.org/10.1016/j.msea.2011.01.032

    Article  CAS  Google Scholar 

  45. Y. Jiang, F. Liu, J. Alloys Comp. 809, 151829 (2019). https://doi.org/10.1016/j.jallcom.2019.151829

    Article  CAS  Google Scholar 

  46. A. Azarniya, A. Abdollah-zadeh, H.R.M. Hosseini, S. Ramakrishna, Adv. Eng. Mater. 21, 1801269 (2019). https://doi.org/10.1002/adem.201801269

    Article  CAS  Google Scholar 

  47. R. Tao, Y. Zhao, X. Kai, Z. Zhao, R. Ding, L. Liang, W. Xu, J. Alloys Compd. 754, 114–123 (2018). https://doi.org/10.1016/j.jallcom.2018.04.282

    Article  CAS  Google Scholar 

  48. O. Engler, C. Schäfer, O.R. Myhr, Mater. Sci. Eng. A 639, 65–74 (2015). https://doi.org/10.1016/j.msea.2015.04.097

    Article  CAS  Google Scholar 

  49. U. Aybarç, O. Ertuğrul, M.Ö. Seydibeyoğlu, Int. J. Metalcast. 15, 638–649 (2021). https://doi.org/10.1007/s40962-020-00490-7

    Article  CAS  Google Scholar 

  50. X. Liu, S. Jia, L. Nastac, Int. J. Metalcast. 8, 51–58 (2014). https://doi.org/10.1007/BF03355591

    Article  CAS  Google Scholar 

  51. M. Shayan, B. Eghbali, B. Niroumand, Inter. J. Metalcast. 15, 1427–1440 (2021). https://doi.org/10.1007/s40962-021-00574-y

    Article  CAS  Google Scholar 

  52. V.S. Ayar, M.P. Sutaria, Int. J. Metalcast. 14(1), 59–68 (2020)

    Article  CAS  Google Scholar 

  53. V.S. Ayar, M.P. Sutaria, Int. J. Metalcast. 15, 1047–1056 (2021). https://doi.org/10.1007/s40962-019-00328-x

    Article  CAS  Google Scholar 

  54. F. Zhang, P. Sun, X. Li, G. Zhang, Mater. Sci. Eng. A 300, 12–21 (2001). https://doi.org/10.1016/S0921-5093(00)01811-6

    Article  Google Scholar 

  55. M. Manoharan, M. Gupta, Compos. Part B 30, 107–112 (1999). https://doi.org/10.1016/S1359-8368(98)00041-9

    Article  Google Scholar 

Download references

Funding

The authors would like to acknowledge the financial support of the Natural Science Foundation of China (Nos. U20A20274, 52071158, 51701085, U1664254), the Six Talents Peak Project of Jiangsu Province (2018-XCL-202), the Open Funds of SKLMMC of SJTU (MMC-KF18-16), the Jiangsu Province Key Laboratory of High-end Structural Materials (HSM1803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutao Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial or personal interests that could have appear to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dar, S.M., Zhao, Y., Kai, X. et al. Effect of External Pressure on the Microstructure and Mechanical Properties of In Situ (ZrB2+Al2O3/Al3Zr)/6016 Nanocomposites. Inter Metalcast 16, 2162–2174 (2022). https://doi.org/10.1007/s40962-021-00736-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00736-y

Keywords

Navigation