Skip to main content
Log in

Post-Processing of Stir Casted Al–Si12Cu Metal Matrix Composite by Friction Stir Processing

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In the present study friction stir processing is applied on the stir casted metal matrix composite as a post-processing operation. Stir casted metal matrix composites are prepared by using zircon sand particles of 40 µm in the matrix of Al–Si12Cu alloy. Friction stir processing is applied on the metal matrix plates at a constant rotational speed and traverse speed of 1400 rpm and 63 mm/min, respectively. Multiple passes of friction stir processing are applied to elucidate the effect of number of passes on microstructural modification. Microstructural examination showed a significant improvement in eutectic silicon morphology and distribution of zircon sand particles. After four passes of friction stir processing the zircon sand particles are reduced to ~5 µm as compared to initial size of ~40 µm. The friction stir processed metal matrix composite exhibited an increase in ultimate tensile strength, yield strength, percentage elongation, and hardness by ~90, ~104, ~300, and ~34%, respectively as compared to cast metal matrix composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data Availability and Material

The datasets generated during and/or analyzed during the current study are available on request from the corresponding author.

References

  1. S. Sakthivelu, P.P. Sethusundaram, M. Ravichandran, M. Meiganamoorthy, Experimental investigation and analysis of properties and dry sliding wear behavior of Al–Fe–Si alloy matrix composites. Silicon 13, 1285–1294 (2021)

    Article  CAS  Google Scholar 

  2. N. Seyed Pourmand, H. Asgharzadeh, Aluminum matrix composites reinforced with graphene: a review on production, microstructure, and properties. Crit. Rev. Solid State Mater. Sci. 45(4), 289–337 (2020)

    Article  CAS  Google Scholar 

  3. A. Mortensen, J. Llorca, Metal matrix composites. Annu. Rev. Mater. Res. 40, 243–270 (2010)

    Article  CAS  Google Scholar 

  4. M.Y. Zhou, L.B. Ren, L.L. Fan, Y.W.X. Zhang, T.H. Lu, G.F. Quan, M. Gupta, Progress in research on hybrid metal matrix composites. J. Alloys Compd. 838, 155274 (2020)

    Article  CAS  Google Scholar 

  5. V. Sharma, S. Kumar, O.P. Pandey, Correlation of reinforced ceramicparticle’s nature and size with microstructure and wear behavior of Al-Si alloy composite. Adv. Mater. Res. 585, 564–568 (2012)

    Article  CAS  Google Scholar 

  6. V. Chak, H. Chattopadhyay, T.L. Dora, A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites. J. Manuf. Process. 56, 1059–1074 (2020)

    Article  Google Scholar 

  7. S. Kumar, R. Singh, M.S.J. Hashmi, Metal matrix composite: a methodological review. Adv. Mater. Process. Technol. 6(1), 13–24 (2020)

    Google Scholar 

  8. G. Manohar, K.M. Pandey, S.R. Maity, Effect of sintering mechanisms on mechanical properties of AA7075/B4C composite fabricated by powder metallurgy techniques. Ceram. Int. 47(1), 15147–15154 (2021)

    Article  CAS  Google Scholar 

  9. Z. Yang, J. Fan, Y. Liu, Z. Yang, Y. Kang, J. Nie, Effect of combination variation of particle and matrix on the damage evolution and mechanical properties of particle reinforced metal matrix composites. Mater. Sci. Eng. A 806, 140804 (2021)

    Article  CAS  Google Scholar 

  10. B. Xiong, K. Liu, W. Xiong, X. Wu, J. Sun, Strengthening effect induced by interfacial reaction in graphene nanoplatelets reinforced aluminum matrix composites. J. Alloys Compd. 845, 156282 (2020)

    Article  CAS  Google Scholar 

  11. C. Kar, B. Surekha, Characterisation of aluminium metal matrix composites reinforced with titanium carbide and red mud. Mater. Res. Innov. 25(2), 67–75 (2021)

    Article  CAS  Google Scholar 

  12. R.T. Mousavian, S.R. Damadi, R.A. Khosroshahi, D. Brabazon, M. Mohammadpour, A comparison study of applying metallic coating on SiC particles for manufacturing of cast aluminum matrix composites. Int. J. Adv. Manuf. Technol. 81(1), 433–444 (2015)

    Article  Google Scholar 

  13. N. Sun, D. Apelian, Friction stir processing of aluminum alloy A206: part I-microstructure evolution. Int. J. Metalcast. 13, 234–243 (2019)

    Article  CAS  Google Scholar 

  14. C. Tekmen, I. Ozdemir, U. Cocen, K. Onel, The mechanical response of Al–Si–Mg/SiCp composite: influence of porosity. Mater. Sci. Eng. A 360(1–2), 365–371 (2003)

    Article  Google Scholar 

  15. G. Tosun, M. Kurt, The porosity, microstructure, and hardness of Al-Mg composites reinforced with micro particle SiC/Al2O3 produced using powder metallurgy. Compos. Part B Eng. 174, 106965 (2019)

    Article  CAS  Google Scholar 

  16. N. Sun, W.J. Jones, D. Apelian, Friction stir processing of aluminum alloy A206: part II-tensile and fatigue properties. Int. J. Metalcast. 13, 244–254 (2019). https://doi.org/10.1007/s40962-018-0268-6

    Article  CAS  Google Scholar 

  17. K. Aldas, M.D. Mat, Experimental and theoretical analysis of particle distribution in particulate metal matrix composites. J. Mater. Process. Technol. 160(3), 289–295 (2005)

    Article  CAS  Google Scholar 

  18. V. Sharma, S. Kumar, R.S. Panwar, O.P. Pandey, Microstructural and wear behavior of dual reinforced particle (DRP) aluminum alloy composite. J. Mater. Sci. 47(18), 6633–6646 (2012)

    Article  CAS  Google Scholar 

  19. Q. Zhang, D. Sun, S. Pan, M. Zhu, Microporosity formation and dendrite growth during solidification of aluminum alloys: Modeling and experiment. Int. J. Heat MassTransf. 146, 118838 (2020)

    Article  CAS  Google Scholar 

  20. J. Gediga, A. Morfino, M. Finkbeiner, M. Schulz, K. Harlow, Life cycle assessment of zircon sand. Int. J. Life Cycle Assess. 24(11), 1976–1984 (2019)

    Article  CAS  Google Scholar 

  21. I. Sabirov, O. Kolednik, R.Z. Valiev, R. Pippan, Equal channel angular pressing of metal matrix composites: effect on particle distribution and fracture toughness. Acta Mater. 53(18), 4919–4930 (2005)

    Article  CAS  Google Scholar 

  22. T.B. Sercombe, X. Li, Selective laser melting of aluminium and aluminium metal matrix composites. Mater. Technol. 31(2), 77–85 (2016)

    CAS  Google Scholar 

  23. A. Bachmaier, R. Pippan, Generation of metallic nanocomposites by severe plastic deformation. Int. Mater. Rev. 58(1), 41–62 (2013)

    Article  CAS  Google Scholar 

  24. V. Sharma, Y. Singla, Y. Gupta, J. Raghuwanshi, Post-processing of metal matrix composites by friction stir processing. AIP Conf. Proc. 1953(1), 090062 (2018)

    Article  Google Scholar 

  25. A. Tewari, J.E. Spowart, A.M. Gokhale, R.S. Mishra, D.B. Miracle, Characterization of the effects of friction stir processing on microstructural changes in DRA composites. Mater. Sci. Eng. A 428(1–2), 80–90 (2006)

    Article  Google Scholar 

  26. Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon 50(5), 1843–1852 (2012)

    Article  CAS  Google Scholar 

  27. R.K. Singh Yadav, V. Sharma, B. Venkat Manoj Kumar, On the role of sliding load and heat input conditions in friction stir processing on tribology of aluminium alloy–alumina surface composites. Tribol.-Mater. Surf. Interfaces 13(2), 88–101 (2019)

    Article  CAS  Google Scholar 

  28. P. Kurtyka, N. Rylko, T. Tokarski, A. Wójcicka, A. Pietras, Cast aluminium matrix composites modified with using FSP process–Changing of the structure and mechanical properties. Compos. Struct. 133, 959–967 (2015)

    Article  Google Scholar 

  29. Y. Huang, J. Li, L. Wan, X. Meng, Y. Xie, Strengthening and toughening mechanisms of CNTs/Mg-6Zn composites via friction stir processing. Mater. Sci. Eng. A 732, 205–211 (2018)

    Article  CAS  Google Scholar 

  30. K. Yang, W. Li, Y. Xu, X. Yang, Using friction stir processing to augment corrosion resistance of cold sprayed AA2024/Al2O3 composite coatings. J. Alloys Compd. 774, 1223–1232 (2019)

    Article  CAS  Google Scholar 

  31. M. Rahsepar, H. Jarahimoghadam, The influence of multipass friction stir processing on the corrosion behavior and mechanical properties of zircon-reinforced Al metal matrix composites. Mater. Sci. Eng. A 671, 214–220 (2016)

    Article  CAS  Google Scholar 

  32. S.R. Wang, M.A. Ru, Y.Z. Wang, W.A.N.G. Yong, L.Y. Yang, Growth mechanism of primary silicon in cast hypoeutectic Al-Si alloys. Trans. Nonferr. Metals Soc. China 22(6), 1264–1269 (2012)

    Article  CAS  Google Scholar 

  33. S.D. McDonald, K. Nogita, A.K. Dahle, Eutectic nucleation in Al–Si alloys. Acta Mater. 52(14), 4273–4280 (2004)

    Article  CAS  Google Scholar 

  34. S. Shankar, Y.W. Riddle, M.M. Makhlouf, Nucleation mechanism of the eutectic phases in aluminum–silicon hypoeutectic alloys. Acta Mater. 52(15), 4447–4460 (2004)

    Article  CAS  Google Scholar 

  35. S. Nafisi, R. Ghomashchi, H. Vali, Eutectic nucleation in hypoeutectic Al-Si alloys. Mater. Charact. 59(10), 1466–1473 (2008)

    Article  CAS  Google Scholar 

  36. S. Nagarajan, B. Dutta, M.K. Surappa, The effect of SiC particles on the size and morphology of eutectic silicon in cast A356/SiCp composites. Compos. Sci. Technol. 59(6), 897–902 (1999)

    Article  CAS  Google Scholar 

  37. ASTM E111-17, Standard Test Method for Young’s Modulus, Tangent Modulus, and Chord Modulus, ASTM International, West Conshohocken, PA (2017)

  38. ASTM E8/E8M-21, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA (2021)

  39. M. Huang, Z. Li, Size effects on stress concentration induced by a prolate ellipsoidal particle and void nucleation mechanism. Int. J. Plast. 21(8), 1568–1590 (2005)

    Article  Google Scholar 

  40. S. Tiwari, S. Das, V.A. Ch, Mechanical properties of Al–Si–SiC composites. Mater. Res. Expr. 6(7), 076553 (2019)

    Article  CAS  Google Scholar 

  41. N. Chawla, Y.L. Shen, Mechanical behavior of particle reinforced metal matrix composites. Adv. Eng. Mater. 3(6), 357–370 (2001)

    Article  CAS  Google Scholar 

Download references

Funding

No funds, grants, or other support were received.

Author information

Authors and Affiliations

Authors

Contributions

VS, SK contributed to conceptualization; VS, SK contributed to methodology; SK, YD contributed to formal analysis and investigation; VS, PKN contributed to writing original draft prepartion; SK, YD contributed to writing-review and editing.

Corresponding author

Correspondence to Suresh Kumar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Consent to Participate

Not applicable

Consent for Publication

I and my authors give my consent to the publication of the identifiable statement, which can include figures, tables, and others detail within the text to be published in the above Journal.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the institution's ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Kumar, S., Dewang, Y. et al. Post-Processing of Stir Casted Al–Si12Cu Metal Matrix Composite by Friction Stir Processing. Inter Metalcast 16, 1985–1994 (2022). https://doi.org/10.1007/s40962-021-00737-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00737-x

Keywords

Navigation