Skip to main content

Advertisement

Log in

On the Mathematical Modeling of Measles Disease Dynamics with Encephalitis and Relapse Under the Atangana–Baleanu–Caputo Fractional Operator and Real Measles Data of Nigeria

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a population based mathematical model describing the transmission of measles disease with double vaccination dose, treatment and two groups of measles infected and measles induced encephalitis infected humans with relapse under the fractional Atangana–Baleanu–Caputo (ABC) operator is studied. The existence, uniqueness and positivity analysis of the fractional order model is established, while the model is validated by fitting data on measles prevalence in Nigeria made available by the Nigerian Center for Disease Control relative to the year 2020, using the nonlinear least square algorithm. Using the estimated and fitted parameters, the basic reproduction number \(R_{ms}\) is obtained and found to be \(R_{ms}\approx 1.34\), which reveal that despite the vaccination and treatment as controls, at least an individual is still being infected on the average, which describes the failure of vaccination effort and coverage in the Nigerian nation. Also, the model system equilibria, called the measles-free and measles-endemic equilibrium were obtained and the measles-free equilibrium is shown to be locally and globally asymptotically stable if \(R_{ms}\) is less than unity. A numerical scheme under the ABC operator, which is a mixture of the two-step Lagrange polynomial and the fundamental theorem of fractional calculus, is used to obtain the approximate solutions of the fractional order measles model, which proved to be convergent and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

\(R_{ms}\) :

Basic reproduction number of measles disease.

ABC :

Atangana–Baleanu–Caputo

\(\tau \) :

Fractional order

\(^{ABC} D_0^\tau \) :

Atangana–Baleanu–Caputo fractional differential operator

\(S_m\) :

Human individuals susceptible to measles disease

\(V_e\) :

Humans who received vaccinations

\(I_m\) :

Humans infected with measles

\(I_e\) :

Humans infected with measles induced encephalitis

\(T_m\) :

Treated humans

\(R_m\) :

Humans who recovered from measles infection

\(\zeta _t(\cdot )\) :

One parameter Mittag-Leffler function

\(\mathfrak {I}^1\) :

Space function

gf(t):

Function of t

\(\varsigma \) :

Vector of unknown function

X :

Space function

\(P_i(i=1-6)\) :

Functions satisfying the Lipschitz condition

\(\omega _i(i=1-6)\) :

Lipschitz constants

r :

Constant for triangular inequality

\(\wedge \) :

Set of feasible solutions of the model

\(E_m\) :

Measles-free equilibrium solution

\(E_m^*\) :

Measles-endemic equilibrium solution

F :

Non-negative matrix of appearance of new infections

V :

Non-negative matrix of movement of individuals within compartments

h :

Step length

\(\Gamma \) :

Gamma function

\(\mathfrak {R}(q_i)\) :

Real part of a matrix

References

  1. Adewale, S.O., Mohammed, I.T., Olopade, I.A.: Mathematical analysis of effect of area on the dynamical spread of measles. IOSR J. Eng. 4(3), 43–57 (2014)

    Article  Google Scholar 

  2. Abdulkarim, A.A.I., Ibrahim, R.M., Fawi, A.O., Adebayo, O.A., Johnson, A.W.B.R.: Vaccines and immunization: the past, present and future in Nigeria. Niger. J. Paediatr. 38(4), 186–194 (2011)

    Google Scholar 

  3. Abdullah, M., Aqeel, A., Naza, N., Farman, M., Ahmed, M.O.: Approximate solution and analysis of smoking epidemic model with Caputo fractional derivatives. Int. J. Appl. Comput. Math. 4, 112 (2018). https://doi.org/10.1007/s40819-018-0543-5

    Article  MathSciNet  MATH  Google Scholar 

  4. Ahmadi Assor, A.A., Valipour, P., Ghasemi, S.E., Ganji, D.D.: Mathematical modeling of carbon nanotube with fluid flow using Keller box method: a vibrational study. Int. J. Appl. Comput. Math. 3, 1689–1701 (2017)

    Article  MathSciNet  Google Scholar 

  5. Aldila, D., Asrianti, D.: A deterministic model of measles with imperfect vaccination and quarantine intervention. J. Phys. 1218(1), 12044 (2019)

    Google Scholar 

  6. Allen, L.J., Jones, M.A., Martin, C.F.: A discrete-time model with vaccination for a measles epidemic. Math. Biosci. 105(1), 111–131 (1991)

    Article  MathSciNet  Google Scholar 

  7. Al-Sheikh, S.A.: Modeling and analysis of an SEIR epidemic system with a limited resource for treatment. Glob. J. Sci. Front. Res. Math. Decis. Sci. 12(14), 56–66 (2012)

    Google Scholar 

  8. Ashraf, F., Ahmad, M.O.: Nonstandard finite difference scheme for control of measles epidemiology. Int. J. Adv. Appl. Sci. 6(3), 79–85 (2019)

    Article  Google Scholar 

  9. Atangana, A.: Application of fractional calculus to epidemiology. In: Cattani, C., Srivastava, H.M., Yang, X.-J. (eds.) Fractional Dynamics, pp. 174–90. Walter de Gruyter, Warsaw (2015)

    Google Scholar 

  10. Ibrahim, B.S., Usman, R., Yahaya Mohammed, Z.D., Okunromade, O., Abubakar, A.A., Nguku, P.M.: Burden of measles in Nigeria: a five-year review of case based surveillance data, 2012–2016. Pan Afr. Med. J. 32(Suppl 1), 5 (2019)

    Google Scholar 

  11. Bakare, E.A., Adekunle, Y.A., Kadiri, K.O.: Modelling and simulation of the dynamics of the transmission of measles. Int. J. Comput. Trends Technol. 3(1), 2012 (2012)

    Google Scholar 

  12. Coughlin, M., Beck, A., Bankamp, B., Rota, P.: Perspective on global measles epidemiology and control and the role of novel vaccination strategies. Viruses 9(1), 11 (2017)

    Article  Google Scholar 

  13. Ferren, M., Horvat, B., Mathieu, C.: Measles encephalitis: towards new therapeutics. Viruses 11(11), 1017 (2019). https://doi.org/10.3390/v11111017

    Article  Google Scholar 

  14. Fisher, D.L., Defres, S., Solomon, T.: Measles-induced encephalitis. QJM Int. J. Med. 108(3), 177–182 (2015). https://doi.org/10.1093/qjmed/hcu113

    Article  Google Scholar 

  15. Edwards, Frank E.: Relaspe in measles. Br. Med. J. 1(3360), 987 (1925)

    Article  Google Scholar 

  16. Fred, M.O., Sigey, J.K., Okello, J.A., Okwoyo, J.M., Kangethe, G.J.: Mathematical modeling on the control of measles by vaccination: case study of KISII County, Kenya. SIJ Trans. Comput. Sci. Eng. Appl. 2(3), 61–9 (2014)

    Google Scholar 

  17. Gashirai, T.B., Hove-Musekwa, S.D., Mushayabasa, S.: Optimal control applied to a fractional order foot and mouth disease model. Int. J. Appl. Comput. Math. 7, 73 (2021)

    Article  MathSciNet  Google Scholar 

  18. Gerard, L.R.: Cases of relapse in measles. Clin. Notes Med. Surg. Obstet. Therap. 166(4295), 1905 (1837)

    Google Scholar 

  19. Grenfell, B.T.: Chance and chaos in measles dynamics. J. R. Stat. Soc. Ser. B (Methodol.) 54(2), 383–398 (1992). https://doi.org/10.1111/j.2517-6161.1992.tb01888.x

    Article  Google Scholar 

  20. Haq, F., Shahzad, M., Muhammad, S., Wahab, H.A., Rahman, G.: Numerical analysis of fractional order epidemic model of childhood diseases. Discrete Dyn. Nat. Soc. 2017, 1–7 (2017)

    Article  MathSciNet  Google Scholar 

  21. Hethcote, H.W.: The mathematics of infectious diseases. Soc. Ind. Appl. Math. Rev. 42(4), 599–653 (2000). https://doi.org/10.1137/S0036144500371907

    Article  MathSciNet  MATH  Google Scholar 

  22. Khan, M., Rasheed, A.: The space time coupled fractional Cattaneo–Friedrich Maxwell model with Caputo derivatives. Int. J. Appl. Comput. Math. 7, 012 (2021)

    Article  MathSciNet  Google Scholar 

  23. Khan, M.A., Ullah, S., Farooq, M.: A new fractional model for tuberculosis with relapse via Atangana–Baleanu derivative. Chaos Solitons Fractals 116, 227–38 (2018)

    Article  MathSciNet  Google Scholar 

  24. La-Salle, J.P.: The stability of dynamical systems. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 25. SIAM, Philadelphia (1976)

  25. Martin, K., Mustafa, T., Reinhard, S.: Explixit formulae for the peak time of an epidemic from the SIR model. Which approximat to use? Phys. D Nonlinear Phenom. 425, 13298 (2021). https://doi.org/10.1016/j.physd.2021.132981

    Article  Google Scholar 

  26. Measles infection and encephalitis: The Encephalitis Society (2017). https://www.encephalitis.info

  27. Measles Campaign in Nigeria. Retrieved (2019). https://www.afro.who.int/news/who-supports-government-mitigate-measles-rubella-outbreaks-nationwide

  28. Measles situation report (2020). https://ncdc.gov.ng

  29. Mohammed, A., Marwan, A., Imad, J.: Explicit and approximate solutions for the conformable Caputo time—fractional diffusive predator–prey model. Int. J. Appl. Comput. Math. 7, 90 (2021)

    Article  MathSciNet  Google Scholar 

  30. Momoh, A.A., Ibrahim, M.O., Uwanta, I.J., Manga, S.B.: Mathematical model for control of measles epidemiology. Int. J. Pure Appl. Math. 87(5), 707–717 (2013). https://doi.org/10.12732/ijpam.v87i5.4

    Article  Google Scholar 

  31. Nigerian Center for Disease Control. (2020). https://ncdc.gov.ng/reports/177/2020-march-week-9

  32. Nigeria Death Rate 1950–2021 | MacroTrends. https://www.macrotrends.net/countries/NGA/death-rate

  33. Nigeria: Forecasted birth rate 2020–2050 | Statista. https://www.statista.com/Society/Demographics

  34. Obumneke, C., Adamu, I.I., Ado, S.T.: Mathematical model for the dynamics of measles under the combined effect of vaccination and measles therapy. Int. J. Sci. Technol. 6(6), 862–874 (2017)

    Google Scholar 

  35. Ochoche, J.M., Gweryina, R.I.: A mathematical model of measles with vaccination and two phases of infectiousness. IOSR J. Math. 10(1), 95–105 (2014). https://doi.org/10.9790/5728-101495105

    Article  Google Scholar 

  36. Okyere-Siabouh, S., Adetunde, I.A.: Mathematical model for the study of measles in cape coast metropolis. Int. J. Modern. Biol. Med. 4(2), 110–33 (2013)

    Google Scholar 

  37. Peter, O.J., Afolabi, O.A.V., Afolabi, A., Akpan, C.E., Oguntolu, F.A.: Mathematical model for the control of measles. J. Appl. Sci. Environ. Manag. 22(4), 571–6 (2018)

    Google Scholar 

  38. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  39. Qureshi, S.: Effects of vaccination on measles dynamics under fractional conformable derivative with Liouville–Caputo operator. Eur. Phys. J. Plus 135, 63 (2020). https://doi.org/10.1140/epjp/s13360-020-00133-0

    Article  Google Scholar 

  40. Qureshi, S., Memoon, Z.-U.-N.: Monotonically decreasing behavior of measles epidemic well captured by Atangana–Baleanu–Caputo fractional operator under real measles data of Pakistan. Chaos Solitons and Fractals 131, 109478 (2020)

    Article  MathSciNet  Google Scholar 

  41. Shuai, Z., Driessche, V.P.: Global stability of infectious disease models using Lyapunov functions. SIAM J. Appl. Math. 73(4), 1513–1532 (2013)

    Article  MathSciNet  Google Scholar 

  42. Toufik, M., Atangana, A.: New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models. Eur. Phys. J. Plus 132(10), 444 (2017)

    Article  Google Scholar 

  43. Turkyimazoglu, M.: Explicit formulae for the peak time of an epidemic from the SIR model. Physica D 4, 22 (2021). https://doi.org/10.1016/j.physd.2021.1321102

    Article  MathSciNet  Google Scholar 

  44. World Health Organization (WHO): Immunization, Vaccines and Biologicals. https://www.who.int/teams/immunization-vaccines-and-biologicals/diseases/measles

  45. Zada, A., Ali, S.: Stability of integral Caputo type boundary value problem with noninstataneous impulses. Int. J. Appl. Comput. Math. 5, 55 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluwatayo Michael Ogunmiloro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogunmiloro, O.M., Idowu, A.S., Ogunlade, T.O. et al. On the Mathematical Modeling of Measles Disease Dynamics with Encephalitis and Relapse Under the Atangana–Baleanu–Caputo Fractional Operator and Real Measles Data of Nigeria. Int. J. Appl. Comput. Math 7, 185 (2021). https://doi.org/10.1007/s40819-021-01122-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01122-2

Keywords

Navigation