Skip to main content

Advertisement

Log in

Optimal Control Applied to a Fractional-Order Foot-and-Mouth Disease Model

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose a nonlinear fractional-order model in order to explain and understand the outbreaks of foot-and-mouth disease. The proposed model rely on the Caputo operator. We computed the basic reproduction number and demonstrated that it is an important metric for extinction and persistence of the disease. Utilizing reported foot-and-mouth disease data for Zimbabwe and the nonlinear least-squares curve fitting method we estimated the model parameters. Meanwhile, we performed an optimal control study on the use of animal vaccination and culling of infectious animals as disease control measures against foot-and-mouth disease. Our findings showed combinations of optimal vaccination and culling rates that could lead to the effective management of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availibility Statement

The data used to support the findings of this study are included within the article.

References

  1. Hayat, T., Khan, M.I., Farooq, M., Alsaedi, A., Waqas, M., Yasmeen, T.: Impact of Cattaneo–Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. Int. J. Heat Mass Transf. 99, 702–710 (2016)

    Article  Google Scholar 

  2. Khan, M.I., Waqas, M., Hayat, T., Alsaedi, A.: Colloidal study of Casson fluid with homogeneous–heterogeneous reactions. J. Colloid Interface Sci. (2017). https://doi.org/10.1016/j.jcis.2017.03.024

    Article  Google Scholar 

  3. Turkyilmazoglu, M.: Convergence of the homotopy perturbation method. Turkyilmazoglu M. Int. J. Nonlinear Sci. Numer. Simul. 12, 9–14 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Turkyilmazoglu, M.: Effective computation of exact and analytic approximate solutions to singular nonlinear equations of Lane–Emden–Fowler type. Appl. Math. Model. 37, 7539–7548 (2013)

    Article  MathSciNet  Google Scholar 

  5. Lolika, Po, Mushayabasa, S., Bhunu, C.P., Modnak, C., Wang, J.: Modeling and analyzing the effects of seasonality on brucellosis infection. Chaos Solitons Fract. 104, 338–349 (2017)

    Article  MathSciNet  Google Scholar 

  6. Kalinda, C., Mushayabasa, S., Chimbari, M.J., Mukaratirwa, S.: Optimal control applied to a temperature dependent schistosomiasis model. Biosystems 175, 47–56 (2019)

    Article  Google Scholar 

  7. Al-khedhairi, A., Elsadany, A.A., Elsonbaty, A.: Modelling immune systems based on Atnaga–Baleanu fraction derivative. Chaos Solitions Fract. 129, 25–39 (2019)

    Article  Google Scholar 

  8. Brauer, F., Castillo-Chavez, C.: Mathematical Models in Population Biology and Epidemiology. Springer, New York (2001)

    Book  Google Scholar 

  9. Antonio, M., Hernandez, T., Vagras-De-Leon, C.: Stability and Lyapunov functions for systems with Atangana–Baleanu Caputo derivative: an HIV/AIDS epidemic model. Chaos Solitions Fract. 132, 109586 (2020)

    Article  MathSciNet  Google Scholar 

  10. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. (2016). https://doi.org/10.2298/TSCI160111018A

    Article  Google Scholar 

  11. Mlyashimbi, H., Moatlhodi, K., Dmitry, K., Mushayabasa, S.: A fractional-order Trypanosoma brucei rhodesiense model with vector saturation and temperature dependent parameters. Adv. Differ. Equ. 284, 1–23 (2020)

    MathSciNet  Google Scholar 

  12. Mushayabasa, S., Bhunu, C.P., Dhlamini, M.: Impact of vaccination and culling on controlling foot and mouth disease: a mathematical modeling approach. WJV 1, 156–161 (2011)

    Article  Google Scholar 

  13. Mushayabasa, S., Posny, D., Wang, J.: Modeling the intrinsic dynamics of FMD. Math. Biosci. Eng. 1, 156–161 (2011)

    Google Scholar 

  14. Keeling, M.J., Woolhouse, M.E.J., May, R.M., Davies, G., Grenfell, B.T.: Modelling vaccination strategies against foot-and-mouth disease. Nature 421, 136–142 (2003)

    Article  Google Scholar 

  15. Mushayabasa, S., Tapedzesa, G.: Modeling the effects of multiple intervention strategies on controlling foot-and-mouth disease. BioMed Res. Int. 2015, Article ID 584234 (2015)

  16. Bravo, de Rueda C, de Jong CM M, Eble LP, Dekker, A.: Quantification of transmission of foot-an-mouth disease virus caused by an environment contaminated with secretions and excretions from infected calves. Veter. Res. 46, 43 (2015)

  17. Zhang, J., Zhen, Jin, Yuan, Yuan: Assessing the spread of foot and mouth disease in mainland china by dynamical switching model. J. Theor. Biol. (2018). https://doi.org/10.1016/j.jtbi.2018.09.027

    Article  MATH  Google Scholar 

  18. Tessema, K.M., Chirove, F., Sibanda, P.: Modeling control of foot and mouth disease with two time delays. Int. J. Biomath. 12(04), 1930001 (2019)

    Article  MathSciNet  Google Scholar 

  19. Gashirai, B.T., Musekwa-Hove, D.S., Lolika, P.O.P.O., Mushayabasa, S.: Global stability and optimal control analysis of a foot-and-mouth disease model with vaccine failure and environmental transmission. Chaos Solitons Fract. 132, 109568 (2020)

    Article  MathSciNet  Google Scholar 

  20. Gashirai, B.T., Musekwa-Hove, D., Mushayabasa, S.: Lyapunov stability analysis for a delayed foot-and-mouth disease model. Discrete Dyn. Nat. Soc. (2020). https://doi.org/10.1155/2020/3891057

    Article  MathSciNet  MATH  Google Scholar 

  21. Gashirai, B.T., Musekwa-Hove, D.S., Mushayabasa, S.: Dynamical analysis of a fractional-order foot-and-mouth disease model. Math Sci (2021). https://doi.org/10.1007/s40096-020-00372-3

    Article  MathSciNet  MATH  Google Scholar 

  22. Atangana, A., Secer, A.: A note on fractional order derivatives and table of fractional derivatives of some special functions. Abstr. Appl. Anal. 2013, 279681 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Ucar, E., Ozdemir, N., Altun, E.: Fractional order model of immune cells influenced by cancer cells. Math. Model. Nat. Phenom. 14, 308 (2019). https://doi.org/10.1051/mmnp/2019002

    Article  MathSciNet  MATH  Google Scholar 

  24. Scherer, R., Kalla, S.L., Tang, Y., Huang, J.: The Grünwald–Letnikov method for fractional differential equations. Comput. Math. Appl. 62(3), 902–917 (2011). https://doi.org/10.1016/j.camwa.2011.03.054

    Article  MathSciNet  MATH  Google Scholar 

  25. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  26. Liang, S., Wu, R., Chen, L.: Laplace transform of fractional order differential equations. Electron. J. Differ. Equ. 2015(139), 1 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Kexue, L., Jigen, P.: Laplace transform and fractional differential equations. Appl. Math. Lett. 24(12), 2019–2023 (2011)

    Article  MathSciNet  Google Scholar 

  28. Igor, P.: Fractional Differential Equations: Mathematics in Science and Engineering, vol. 198. Academic Press, New York (1999)

    Google Scholar 

  29. Vargas-De-Leon, C.: Volterra-type Lyapunov functions for fractional-order epidemic systems. Commun. Nonlinear Sci. Numer. Simul. 24(1–3), 75–85 (2015)

    Article  MathSciNet  Google Scholar 

  30. Parthiban, A.B.R., Mahapatra, M., Gubbins, S., Parida, S.: Virus excretion from foot-and- mouth disease virus carrier cattle and their potential role in causing new outbreaks. PLoS ONE 10(6), e0128815 (2015). https://doi.org/10.1371/journal.pone.0128815

    Article  Google Scholar 

  31. Thomson, G.R.: The role of carrier animals in the transmission of foot-and-mouth disease. In: Comprehensive Reports on Technical Items Presented to the International Committee 64th General Session (pp. 87–103): Paris: Off. Int, Epizootic (1996)

  32. Bravo, D.E.R.C., Dekker, A., Eble, P.L., Dej, M.C.: Vaccination of cattle only is sufficient to stop FMDV transmission in mixed populations of sheep and cattle. Epidemiol. Infect. 143(11), 2279–2286 (2015)

    Article  Google Scholar 

  33. Lin, W.: Global existence theory and chaos control of fractional differential equations. J. Math. Anal. Appl. 332, 709–726 (2007)

    Article  MathSciNet  Google Scholar 

  34. van den Driessche, P., Watmough, J.: Reproduction number and sub-threshold endemic equilibria for compartment models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  Google Scholar 

  35. LaSalle, J.S.: The stability of Dynamical Systems. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 25. Philadelphia: SIAM (1976)

  36. Hale, J.K., Verduyn Lunel, S.: Introduction to Functional Differential Equations. Springer, New York (1993)

    Book  Google Scholar 

  37. Nelder, J., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1964)

    Article  MathSciNet  Google Scholar 

  38. Alexandersen, S., Zhang, Z., Donaldson, A.I.: Aspects of the persistence of foot-and-mouth disease virus in animals-the carrier problem. Microbes Infect. 4(10), 1099–1110 (2002)

    Article  Google Scholar 

  39. Qureshi, S., Yusuf, A.: Fractional derivatives applied to MSEIR problems: comparative study with real world data. Eur. Phys. J. Plus 134(4), 171 (2019)

    Article  Google Scholar 

  40. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962)

    MATH  Google Scholar 

  41. Lenhart, S., Workman, J.T.: Optimal Control Applied to Biological Models. Chapman and Hall; CRC Press, Boca Raton (2007)

    Book  Google Scholar 

  42. McAsey, M., Mou, L., Han, W.: Convergence of the forward–backward sweep method in optimal control. Comput. Optim. Appl. 53, 207–226 (2012)

    Article  MathSciNet  Google Scholar 

  43. Kheiri, H., Jafari, M.: Optimal control of a fractional-order model for the HIV/AIDS epidemic. Int. J. Biomath. 11, 1850086 (2018)

    Article  MathSciNet  Google Scholar 

  44. Lolika, O.P., Mushayabasa, S.: Dynamics and stability analysis of a brucellosis model with two discrete delays. Discrete Dyn. Nat. Soc., 2018, Article ID 6456107 (2018)

  45. Zamri-Saad, M., Kamarudin, M.I.: Control of animal brucellosis: the Malaysian experience. Asian Pac. J. Trop Med. 9(12), 1136–1140 (2016). https://doi.org/10.1016/j.apjtm.2016.11.007

  46. Turkyilmazoglu, M. (2011) An optimal analytic approximate solution for the limit cycle of duffing-van der Pol equation. J. Appl. Mech. 78: 021005-1

  47. Turkyilmazoglu, M.: An optimal variation iteration method. Appl. Math. Lett. 24, 762–765 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Gashirai, B.T.: Conceptualization, Formal analysis and Methodology. Hove-Musekwa, S.D.: Original draft preparation. Mushayabasa, S.: Software, Validation, Writing-Reviewing and Editing.

Corresponding author

Correspondence to Steady Mushayabasa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gashirai, T.B., Hove-Musekwa, S.D. & Mushayabasa, S. Optimal Control Applied to a Fractional-Order Foot-and-Mouth Disease Model. Int. J. Appl. Comput. Math 7, 73 (2021). https://doi.org/10.1007/s40819-021-01011-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01011-8

Keywords

Mathematics Subject Classification

Navigation