Skip to main content
Log in

Structural health monitoring of carbon-material-reinforced polymers using electrical resistance measurement

  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

This paper presents a review of structural health monitoring techniques for carbon-based materials and structures. Based on the piezoresistivity of carbon, elastic deformation and the failure of carbon structures are visible by monitoring the electrical resistance. Carbon structures have an in-situ real-time self-sensing capability, eliminating the need for additional sensors. Numerous researchers have investigated the electromechanical properties of carbon materials by conducting experiments, numerical analyses, and simulations. In addition, the electrical conductivity of carbon is reinterpreted as an electrically equivalent circuit in order to investigate orientation-dependent sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hwang, W.-C., Yang, Y.-J., Cha, C.-S., Jung, J.-A., Kim, J.-H., et al., “Impact Collapse Behavior of CFRP Structural Members according to the Variation of Section Shapes and Stacking Angles,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 4, pp. 677–684, 2015.

    Article  Google Scholar 

  2. Shahrajabian, H. and Farahnakian, M., “Modeling and Multi-Constrained Optimization in Drilling Process of Carbon Fiber Reinforced Epoxy Composite,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 10, pp. 1829–1837, 2013.

    Article  Google Scholar 

  3. Hong, S. W., Ahn, S. S., Li, H., Kim, J. K., Sang, J. K., et al., “Charpy Impact Fracture Characteristics of CFRP Composite Materials According to Variations of Fiber Array Direction and Temperature,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 2, pp. 253–258, 2013.

    Article  Google Scholar 

  4. Ahn, S. S., Hong, S. W., Koo, J. M., and Seok, C. S., “Prediction of Compressive Strength of CFRP Composite Structures Using Notch Strength,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 6, pp. 1103–1108, 2013.

    Article  Google Scholar 

  5. Jeon, K.-W., Shin, K.-B., and Kim, J.-S., “Evaluation of Tension-Compression and Tension-Tension Fatigue Life of Woven Fabric Glass/Epoxy Laminate Composites Used in Railway Vehicle,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 5, pp. 813–820, 2011.

    Article  Google Scholar 

  6. Tsao, C. C. and Hocheng, H., “Computerized Tomography and CScan for Measuring Delamination in the Drilling of Composite Materials Using Various Drills,” International Journal of Machine Tools and Manufacture, Vol. 45, No. 11, pp. 1282–1287, 2005.

    Article  Google Scholar 

  7. Gros, X. E., Ogi, K., and Takahashi, K., “Eddy Current, Ultrasonic C-Scan and Scanning Acoustic Microscopy Testing of Delaminated Quasi-Isotropic CFRP Materials: A Case Study,” Journal of Reinforced Plastics and Composites, Vol. 17, No. 5, pp. 389–405, 1998.

    Google Scholar 

  8. Mook, G., Pohl, J., Michel, F., and Benziger, T., “Damage Evaluation of Smart CFRP-Piezoceramic-Materials Using Non-Destructive Methods,” Proc. of ICCM-12 Conference on Composite Materials Paris, pp. 1–10, 1999.

    Google Scholar 

  9. Lane, R. A., “Sensors and Sensing Technologies for Integrated Vehicle Health Monitoring Systems,” pp. 11–15, 2004.

    Google Scholar 

  10. Wang, P., Tamilselvan, P., Twomey, J., and Youn, B. D., “Prognosis-Informed Wind Farm Operation and Maintenance for Concurrent Economic and Environmental Benefits,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 6, pp. 1049–1056, 2013.

    Article  Google Scholar 

  11. Lange, R. and Mook, G., “Structural Analysis of CFRP Using Eddy Current Methods,” NDT & E International, Vol. 27, No. 5, pp. 241–248, 1994.

    Article  Google Scholar 

  12. Riegert, G., Zweschper, T., and Busse, G., “Lockin Thermography with Eddy Current Excitation,” Quantitative InfraRed Thermography Journal, Vol. 1, No. 1, pp. 21–32, 2004.

    Article  Google Scholar 

  13. Schulze, M. H., Heuer, H., Kü ttner, M., and Meyendorf, N., “High-Resolution Eddy Current Sensor System for Quality Assessment of Carbon Fiber Materials,” Microsystem Technologies, Vol. 16, No. 5, pp. 791–797, 2010.

    Article  Google Scholar 

  14. Yin, W., Withers, P. J., Sharma, U., and Peyton, A. J., “Noncontact Characterization of Carbon-Fiber-Reinforced Plastics Using Multifrequency Eddy Current Sensors,” IEEE Transactions on Instrumentation and Measurement, Vol. 58, No. 3, pp. 738–743, 2009.

    Article  Google Scholar 

  15. Lee, J., Sheen, B., and Cho, Y., “Quantitative Tomographic Visualization for Irregular Shape Defects by Guided Wave Long Range Inspection,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 9, pp. 1949–1954, 2015.

    Article  Google Scholar 

  16. Seo, H., Jhang, K.-Y., Kim, K.-C., and Hong, D.-P., “Improvement of Crack Sizing Performance by Using Nonlinear Ultrasonic Technique,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 11, pp. 2461–2464, 2014.

    Article  Google Scholar 

  17. Park, J.-W., Im, K.-H., Yang, I.-Y., Kim, S.-K., Kang, S.-J., et al. “Terahertz Radiation NDE of Composite Materials for Wind Turbine Applications,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 6, pp. 1247–1254, 2014.

    Article  Google Scholar 

  18. Im, K.-H., Lee, K.-S., Yang, I.-Y., Yang, Y.-J., Seo, Y.-H., et al. “Advanced T-Ray Nondestructive Evaluation of Defects in FRP Solid Composites,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 6, pp. 1093–1098, 2013.

    Article  Google Scholar 

  19. Kim, G., Hong, S., Jhang, K.-Y., and Kim, G. H., “NDE of Low-Velocity Impact Damages in Composite Laminates Using ESPI, Digital Shearography and Ultrasound C-Scan Techniques,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 6, pp. 869–876, 2012.

    Article  Google Scholar 

  20. Hsu, D. K., Lee, K.-S., Park, J.-W., Woo, Y.-D., Im, K. H., “NDE Inspection of Terahertz Waves in Wind Turbine Composites,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 7, pp. 1183–1189, 2012.

    Article  Google Scholar 

  21. Gao, D., Wang, Y., Wu, Z., Rahim, G., and Ba, S., “Design of a Sensor Network for Structural Health Monitoring of a Full-Scale Composite Horizontal Tail,” Smart Materials and Structures, Vol. 23, No. 5, 2014.

  22. Tsao, C., “Thrust Force and Delamination of Core-Saw Drill during Drilling of Carbon Fiber Reinforced Plastics (CFRP),” The International Journal of Advanced Manufacturing Technology, Vol. 37, No. 1-2, pp. 23–28, 2008.

    Article  Google Scholar 

  23. Soutis, C. and Curtis, P., “Prediction of the Post-Impact Compressive Strength of CFRP Laminated Composites,” Composites Science and Technology, Vol. 56, No. 6, pp. 677–684, 1996.

    Article  Google Scholar 

  24. Tsao, C. and Hocheng, H., “Computerized Tomography and CScan for Measuring Delamination in the Drilling of Composite Materials Using Various Drills,” International Journal of Machine Tools and Manufacture, Vol. 45, No. 11, pp. 1282–1287, 2005.

    Article  Google Scholar 

  25. Quaegebeur, N., Micheau, P., Masson, P., and Maslouhi, A., “Structural Health Monitoring Strategy for Detection of Interlaminar Delamination in Composite Plates,” Smart Structures and Materials, Vol. 19, No. 8, 2011.

  26. Diamanti, K. and Soutis, C., “Structural Health Monitoring Techniques for Aircraft Composite Structures,” Progress in Aerospace Sciences, Vol. 46, No. 8, pp. 342–352, 2010.

    Article  Google Scholar 

  27. Shmaliy, Y. S., Ibarra-Manzano, O., Aridrade-Lucio, J., and Rojas-Laguna, R., “Approximate Estimates of Limiting Errors of Passive Wireless Saw Sensing with DPM,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 52, No. 10, pp. 1797–1805, 2005.

    Article  Google Scholar 

  28. Singh, R. K. and Chennamsetti, R., “Propagation of Ao Mode through the Front Edge of a Delamination: Numerical and Experimental Studies,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 8, pp. 1639–1645, 2014.

    Article  Google Scholar 

  29. Jeong, H., Lee, J.-S., and Bae, S.-M., “Defect Detection and Localization in Plates Using a Lamb Wave Time Reversal Technique,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 3, pp. 427–434, 2011.

    Article  Google Scholar 

  30. Kang, D., Kim, H.-Y., Kim, D.-H., and Park, S., “Thermal Characteristics of FBG Sensors at Cryogenic Temperatures for Structural Health Monitoring,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 1, pp. 5–9, 2016.

    Article  MathSciNet  Google Scholar 

  31. Kim, C., Kim, K., Kim, H., Paek, I., Yoo, N., et al. “A Method to Estimate Bending Moments Acting on a Wind Turbine Blade Specimen Using FBG Sensors,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 7, pp. 1247–1250, 2012.

    Article  Google Scholar 

  32. Bang, H.-J., Kim, H.-I., and Lee, K.-S., “Measurement of Strain and Bending Deflection of a Wind Turbine Tower Using Arrayed FBG Sensors,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 12, pp. 2121–2126, 2012.

    Article  Google Scholar 

  33. Chan, T. H., Yu, L., Tam, H. Y., Ni, Y. Q., Liu, S. Y., et al., “Fiber Bragg Grating Sensors for Structural Health Monitoring of Tsing Ma Bridge: Background and Experimental Observation,” Engineering Structures, Vol. 28, No. 5, pp. 648–659, 2006.

    Article  Google Scholar 

  34. Takeda, S., Minakuchi, S., Okabe, Y., and Takeda, N., “Delamination Monitoring of Laminated Composites Subjected to Low-Velocity Impact Using Small-Diameter FBG Sensors,” Composites Part A: Applied Science and Manufacturing, Vol. 36, No. 7, pp. 903–908, 2005.

    Article  Google Scholar 

  35. Botsev, Y., Arad, E., Tur, M., Kressel, I., Ben-Sinon, U., et al. “Damage Detection under a Composite Patch Using an Embedded PZT-FBG Ultrasonic Sensor Array,” Proc. of 3rd European Workshop on International Society for Optics and Photonics, Vol. 6619, 2007.

  36. Minakuchi, S., Banshoya, H., Ii, S., and Takeda, N., “Hierarchical Fiber-Optic Delamination Detection System for Carbon Fiber Reinforced Plastic Structures,” Smart Materials and Structures, Vol. 21, No. 10, 2012.

  37. Davis, C. E., Norman, P., Ratcliffe, C., and Crane, R., “Broad Area Damage Detection in Composites Using Fibre Bragg Grating Arrays,” Structural Health Monitoring, Vol. 11, No. 6, pp. 724–732, 2012.

    Article  Google Scholar 

  38. Davis, C., Baker, W., Moss, S. D., Galea, S. C., and Jones, R., “In Situ Health Monitoring of Bonded Composite Repairs Using a Novel Fiber Bragg Grating Sensing Arrangement,” Proc. of International Society for Optics and Photonics of International Symposium on Smart Materials, Nano-, Micro-Smart Systems, pp. 140–149, 2002.

    Google Scholar 

  39. Kalinin, V., “Wireless Physical Saw Sensors for Automotive Applications,” Proc. of 2011 IEEE International Ultrasonics Symposium, pp. 212–221, 2011.

  40. Jang, S., Jo, H., Cho, S., Mechitov, K., Rice, J. A., et al., “Structural Health Monitoring of a Cable-Stayed Bridge Using Smart Sensor Technology: Deployment and Evaluation,” Smart Structures and Systems, Vol. 6, No. 5-6, pp. 439–459, 2010.

    Article  Google Scholar 

  41. Qiu, L. and Yuan, S., “On Development of a Multi-Channel PZT Array Scanning System and Its Evaluating Application on UAV Wing Box,” Sensors and Actuators A: Physical, Vol. 151, No. 2, pp. 220–230, 2009.

    Article  MathSciNet  Google Scholar 

  42. Jeong, M., Bae, J.-G., and Koh, B.-H., “A Feasibility Study of Damage Tracking through the Diffusive Communication of Wireless Sensors,” Int. J. Precis. Eng. Manuf., Vol. 11, No. 1, pp. 23–29, 2010.

    Article  Google Scholar 

  43. Fan, Y. and Kahrizi, M., “Characterization of a FBG Strain Gage Array Embedded in Composite Structure,” Sensors and Actuators A: Physical, Vol. 121, No. 2, pp. 297–305, 2005.

    Article  Google Scholar 

  44. Ciampa, F. and Meo, M., “A New Algorithm for Acoustic Emission Localization and Flexural Group Velocity Determination in Anisotropic Structures,” Composites Part A: Applied Science and Manufacturing, Vol. 41, No. 12, pp. 1777–1786, 2010.

    Article  Google Scholar 

  45. Geim, A. K. and Novoselov, K. S., “The Rise of Graphene,” Nature Materials, Vol. 6, No. 3, pp. 183–191, 2007.

    Article  Google Scholar 

  46. Ashby, M., Gibson, L., Wegst, U., and Olive, R., “The Mechanical Properties of Natural Materials. I. Material Property Charts,” Proc. of the Royal Society of Physical and Engineering Sciences, pp. 123–140, 1995.

    Google Scholar 

  47. Shin, Y. C., Novin, E., and Kim, H., “Electrical and Thermal Conductivities of Carbon Fiber Composites with High Concentrations of Carbon Nanotubes,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 3, pp. 465–470, 2015.

    Article  Google Scholar 

  48. Yoo, L. and Kim, H., “Conductivities of Graphite Fiber Composites with Single-Walled Carbon Nanotube Layers,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 4, pp. 745–748, 2011.

    Article  Google Scholar 

  49. Wang, X. and Chung, D., “Short-Carbon-Fiber-Reinforced Epoxy as a Piezoresistive Strain Sensor,” Smart Materials and Structures, Vol. 4, No. 4, pp. 363, 1995.

    Article  Google Scholar 

  50. Chung, D., “Cement Reinforced with Short Carbon Fibers: A Multifunctional Material,” Composites Part B: Engineering, Vol. 31, No. 6, pp. 511–526, 2000.

    Article  Google Scholar 

  51. Chung, D., “Piezoresistive Cement-Based Materials for Strain Sensing,” Journal of Intelligent Material Systems and Structures, Vol. 13, No. 9, pp. 599–609, 2002.

    Article  Google Scholar 

  52. Wang, X., Fu, X., and Chung, D. D., “Piezoresistive Strain Sensors in the Form of Short Carbon Fiber Composites,” Proc. of 5th Smart Structures and Materials, International Society for Optics and Photonics, Vol. 3324, pp. 115–126, 1998.

    Google Scholar 

  53. Chung, D., “Cement-Matrix Composites for Smart Structures,” Smart Materials and Structures, Vol. 9, No. 4, pp. 389–401, 2000.

    Article  Google Scholar 

  54. Wen, S. and Chung, D., “Pitch-Matrix Composites for Electrical, Electromagnetic and Strain-Sensing Applications,” Journal of Materials Science, Vol. 40, No. 15, pp. 3897–3903, 2005.

    Article  Google Scholar 

  55. Park, J.-M., Kim, P.-G., Jang, J.-H., Wang, Z., Kim, J.-W., et al., “Self-Sensing and Dispersive Evaluation of Single Carbon Fiber/ Carbon Nanotube (CNT)-Epoxy Composites Using Electro-Micromechanical Technique and Nondestructive Acoustic Emission,” Composites Part B: Engineering, Vol. 39, No. 7, pp. 1170–1182, 2008.

    Article  Google Scholar 

  56. Hu, N., Fukunaga, H., Atobe, S., Liu, Y., and Li, J., “Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites,” Sensors, Vol. 11, No. 11, 2011.

  57. Kang, I., Schulz, M. J., Kim, J. H., Shanov, V., and Shi, D., “A Carbon Nanotube Strain Sensor for Structural Health Monitoring,” Smart Materials and Structures, Vol. 15, No. 3, pp. 737–748, 2006.

    Article  Google Scholar 

  58. Todoroki, A. and Tanaka, Y., “Delamination Identification of Cross-Ply Graphite/Epoxy Composite Beams Using Electric Resistance Change Method,” Composites Science and Technology, Vol. 62, No. 5, pp. 629–639, 2002.

    Article  Google Scholar 

  59. Feraboli, P., Cleveland, T., Ciccu, M., Stickler, P., and De Oto, L., “Defect and Damage Analysis of Advanced Discontinuous Carbon/ Epoxy Composite Materials,” Composites Part A: Applied Science and Manufacturing, Vol. 41, No. 7, pp. 888–901, 2010.

    Article  Google Scholar 

  60. Ku-Herrera, J. and Aviles, F., “Cyclic Tension and Compression Piezoresistivity of Carbon Nanotube/Vinyl Ester Composites in the Elastic and Plastic Regimes,” Carbon, Vol. 50, No. 7, pp. 2592–2598, 2012.

    Article  Google Scholar 

  61. Böger, L., Wichmann, M. H., Meyer, L. O., and Schulte, K., “Load and Health Monitoring in Glass Fibre Reinforced Composites with an Electrically Conductive Nanocomposite Epoxy Matrix,” Composites Science and Technology, Vol. 68, No. 7, pp. 1886–1894, 2008.

    Article  Google Scholar 

  62. Alexopoulos, N., Bartholome, C., Poulin, P., and Marioli-Riga, Z., “Structural Health Monitoring of Glass Fiber Reinforced Composites Using Embedded Carbon Nanotube (CNT) Fibers,” Composites Science and Technology, Vol. 70, No. 2, pp. 260–271, 2010.

    Article  Google Scholar 

  63. Vavouliotis, A., Paipetis, A., and Kostopoulos, V., “On the Fatigue Life Prediction of CFRP Laminates Using the Electrical Resistance Change Method,” Composites Science and Technology, Vol. 71, No. 5, pp. 630–642, 2011.

    Article  Google Scholar 

  64. Abot, J. L., Song, Y., Vatsavaya, M. S., Medikonda, S., Kier, Z., et al. “Delamination Detection with Carbon Nanotube Thread in Self-Sensing Composite Materials,” Composites Science and Technology, Vol. 70, No. 7, pp. 1113–1119, 2010.

    Article  Google Scholar 

  65. Kim, S.-C., Kim, J. S., and Yoon, H.-J., “Experimental and Numerical Investigations of Mode I Delamination Behaviors of Woven Fabric Composites with Carbon, Kevlar and Their Hybrid Fibers,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 2, pp. 321–329, 2011.

    Article  MathSciNet  Google Scholar 

  66. Xiao, J., Li, Y., and Fan, W., “A Laminate Theory of Piezoresistance for Composite Laminates,” Composites Science and Technology, Vol. 59, No. 9, pp. 1369–1373, 1999.

    Article  Google Scholar 

  67. Wang, S. and Chung, D., “Piezoresistivity in Continuous Carbon Fiber Polymer-Matrix Composite,” Polymer Composites, Vol. 21, No. 1, pp. 13–19, 2000.

    Article  Google Scholar 

  68. Wang, S., Kowalik, D. P., and Chung, D., “Self-Sensing Attained in Carbon-Fiber-Polymer-Matrix Structural Composites by Using the Interlaminar Interface as a Sensor,” Smart Materials and Structures, Vol. 13, No. 3, pp. 570–592, 2004.

    Article  Google Scholar 

  69. Takeda, T., Shindo, Y., Fukuzaki, T., and Narita, F., “Short Beam Interlaminar Shear Behavior and Electrical Resistance-Based Damage Self-Sensing of Woven Carbon/Epoxy Composite Laminates in a Cryogenic Environment,” Journal of Composite Materials, pp. 1–10, 2012.

    Google Scholar 

  70. Abry, J., Choi, Y., Chateauminois, A., Dalloz, B., Giraud, G., et al. “In-Situ Monitoring of Damage in CFRP Laminates by Means of AC and DC Measurements,” Composites Science and Technology, Vol. 61, No. 6, pp. 855–864, 2001.

    Article  Google Scholar 

  71. Song, D.-Y., Takeda, N., and Kitano, A., “Correlation between Mechanical Damage Behavior and Electrical Resistance Change in CFRP Composites as a Health Monitoring Sensor,” Materials Science and Engineering: A, Vol. 456, No. 1, pp. 286–291, 2007.

    Article  Google Scholar 

  72. Todoroki, A. and Yoshida, J., “Electrical Resistance Change of Unidirectional CFRP Due to Applied Load,” Japan Society of Mechanical Engineers International Journal Series A, Vol. 47, No. 3, pp. 357–364, 2004.

    Google Scholar 

  73. Todoroki, A., Samejima, Y., Hirano, Y., and Matsuzaki, R., “Piezoresistivity of Unidirectional Carbon/Epoxy Composites for Multiaxial Loading,” Composites Science and Technology, Vol. 69, No. 11, pp. 1841–1846, 2009.

    Article  Google Scholar 

  74. Todoroki, A., “Electric Current Analysis for Thick Laminated CFRP Composites,” Transactions of the Japan Society for Aeronautical and Space Sciences, Vol. 55, No. 4, pp. 237–243, 2012.

    Article  Google Scholar 

  75. Todoroki, A. and Yoshida, J., “Apparent Negative Piezoresistivity of Single-Ply CFRP due to Poor Electrical Contact of Four-Probe Method,” Measurement, Vol. 1, pp. 1–6, 2005.

    Google Scholar 

  76. Abry, J., Bochard, S., Chateauminois, A., Salvia, M., and Giraud, G., “In Situ Detection of Damage in CFRP Laminates by Electrical Resistance Measurements,” Composites Science and Technology, Vol. 59, No. 6, pp. 925–935, 1999.

    Article  Google Scholar 

  77. Park, J., Okabe, T., Takeda, N., and Curtin, W., “Electromechanical Modeling of Unidirectional CFRP Composites under Tensile Loading Condition,” Composites Part A: Applied Science and Manufacturing, Vol. 33, No. 2, pp. 267–275, 2002.

    Article  Google Scholar 

  78. Xia, Z., Okabe, T., Park, J., Curtin, W., and Takeda, N., “Quantitative Damage Detection in CFRP Composites: Coupled Mechanical and Electrical Models,” Composites Science and Technology, Vol. 63, No. 10, pp. 1411–1422, 2003.

    Article  Google Scholar 

  79. Todoroki, A., Tanaka, M., and Shimamura, Y., “Measurement of Orthotropic Electric Conductance of CFRP Laminates and Analysis of the Effect on Delamination Monitoring with an Electric Resistance Change Method,” Composites Science and Technology, Vol. 62, No. 5, pp. 619–628, 2002.

    Article  Google Scholar 

  80. Prasad, M. S., Venkatesha, C., and Jayaraju, T., “Experimental Methods of Determining Fracture Toughness of Fiber Reinforced Polymer Composites under Various Loading Conditions,” Journal of Minerals and Materials Characterization and Engineering, Vol. 10, No. 13, pp. 1263–1275, 2011.

    Article  Google Scholar 

  81. Todoroki, A., Samejima, Y., Hirano, Y., Matsuzaki, R., and Mizutani, Y., “Mechanism of Electrical Resistance Change of a Thin CFRP Beam after Delamination Cracking,” Journal of Solid Mechanics and Materials Engineering, Vol. 4, No. 1, pp. 1–11, 2010.

    Article  Google Scholar 

  82. Todoroki, A., Shimazu, Y., and Misutani, Y., “Electrical Resistance Reduction of Laminated Carbon Fiber Reinforced Polymer by Dent Made by Indentation without Cracking,” Journal of Solid Mechanics and Materials Engineering, Vol. 6, No. 12, pp. 1042–1052, 2012.

    Article  Google Scholar 

  83. Todoroki, A. “The Effect of Number of Electrodes and Diagnostic Tool for Monitoring the Delamination of CFRP Laminates by Changes in Electrical Resistance,” Composites Science and Technology, Vol. 61, No. 13, pp. 1871–1880, 2001.

    Article  Google Scholar 

  84. Todoroki, A., Yamada, K., Mizutani, Y., Suzuki, Y., Matsuzaki, R., et al. “Self-Sensing Curved Micro-Strip Line Method for Damage Detection of CFRP Composites,” Open Journal of Composite Materials, Vol. 4, No. 3, pp.5, 2014.

    Google Scholar 

  85. Donough, M., Gunnion, A., Orifici, A., and Wang, C., “Scaling Parameter for Fatigue Delamination Growth in Composites under Varying Load Ratios,” Composites Science and Technology, Vol. 120, pp. 39–48, 2015.

    Article  Google Scholar 

  86. Ranjit, S., Kang, K., and Kim, W., “Investigation of Lock-in Infrared Thermography for Evaluation of Subsurface Defects Size and Depth,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 11, pp. 2255–2264, 2015.

    Article  Google Scholar 

  87. Gao, T. and Cho, J.-U., “A Study on Damage and Penetration Behaviour of Carbon Fiber Reinforced Plastic Sandwich at Various Impacts,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 8, pp. 1845–1850, 2015.

    Article  Google Scholar 

  88. Koo, J.-M., Choi, J.-H., and Seok, C.-S., “Prediction of Residual Strength after Impact of CFRP Composite Structures,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 7, pp. 1323–1329, 2014.

    Article  Google Scholar 

  89. Schueler, R., Joshi, S. P., and Schulte, K., “Damage Detection in CFRP by Electrical Conductivity Mapping,” Composites Science and Technology, Vol. 61, No. 6, pp. 921–930, 2001.

    Article  Google Scholar 

  90. Gunst, R. F., “Response Surface Methodology: Process and Product Optimization Using Designed Experiments,” Technometrics, Vol. 38, No. 3, pp. 284–286, 1996.

    Article  Google Scholar 

  91. Louis, M., Joshi, S. P., and Brockmann, W., “An Experimental Investigation of Through-Thickness Electrical Resistivity of CFRP Laminates,” Composites Science and Technology, Vol. 61, No. 6, pp. 911–919, 2001.

    Article  Google Scholar 

  92. Angelidis, N., Khemiri, N., and Irving, P. E. “Experimental and Finite Element Study of the Electrical Potential Technique for Damage Detection in CFRP Laminates,” Smart Materials and Structures, Vol. 14, No. 1, pp. 147–154, 2005.

    Article  Google Scholar 

  93. Todoroki, A., Haruyama, D., Mizutani, Y., Suzuki, Y., and Yasuoka, T., “Electrical Resistance Change of Carbon/Epoxy Composite Laminates under Cyclic Loading under Damage Initiation Limit,” Open Journal of Composite Materials, Vol. 4, No. 1, pp. 22–31, 2014.

    Article  Google Scholar 

  94. Todoroki, A., “Electric Current Analysis of CFRP Using Perfect Fluid Potential Flow,” Transactions of the Japan Society for Aeronautical and Space Sciences, Vol. 55, No. 3, pp. 183–190, 2012.

    Article  Google Scholar 

  95. Todoroki, A., Tanaka, M., and Shimamura, Y., “Electrical Resistance Change Method for Monitoring Delaminations of CFRP Laminates: Effect of Spacing between Electrodes,” Composites Science and Technology, Vol. 65, No. 1, pp. 37–46, 2005.

    Article  Google Scholar 

  96. Wang, S. and Chung, D., “Negative Piezoresistivity in Continuous Carbon Fiber Epoxy-Matrix Composite,” Journal of Materials Science, Vol. 42, No. 13, pp. 4987–4995, 2007.

    Article  Google Scholar 

  97. Curtin, W., “Stochastic Damage Evolution and Failure in Fiber-Reinforced Composites,” Advances in Applied Mechanics, Vol. 36, pp. 163–253, 1998.

    Article  Google Scholar 

  98. Park, J. B., Okabe, T., and Takeda, N., “New Concept for Modeling the Electromechanical Behavior of Unidirectional Carbon-Fiber-Reinforced Plastic under Tensile Loading,” Smart Materials and Structures, Vol. 12, No. 1, pp. 105–114, 2003.

    Article  Google Scholar 

  99. Tsu, T., Mugele, R., and Mcclintock, F., “A Statistical Distribution Function of Wide Applicability,” ASME-AMER Society Mechanical Engineering, pp. 233–234, 1952.

  100. Xia, Z. and Curtin, W., “Modeling of Mechanical Damage Detection in CFRPs via Electrical Resistance,” Composites Science and Technology, Vol. 67, No. 7, pp. 1518–1529, 2007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Bin Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roh, H.D., Lee, H. & Park, YB. Structural health monitoring of carbon-material-reinforced polymers using electrical resistance measurement. Int. J. of Precis. Eng. and Manuf.-Green Tech. 3, 311–321 (2016). https://doi.org/10.1007/s40684-016-0040-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-016-0040-4

Keywords

Navigation