Skip to main content
Log in

Prediction of residual strength after impact of CFRP composite structures

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This study predicts the residual strength of composite structures with impact damage by using the characteristic length of the composite with the hole corresponding to the impact damage area. Since C shaped structure differs from that of the specimen, the shape factor was obtained from the concentration factor of the plate specimen and that of the structure by finite element analysis. The factor was applied to the prediction model for the residual strength of the CFRP composite plate specimen. Comparison between the experimental result and prediction result shows that the prediction method using the characteristic length can be applied to the prediction of the residual strength of CFRP composites after impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schoeppner, G. and Abrate, S., “Delamination Threshold Loads for Low Velocity Impact on Composite Laminates,” Composites Part A: Applied Science and Manufacturing, Vol. 31, No. 9, pp. 903–915, 2000.

    Article  Google Scholar 

  2. Bahei-El-Din, Y. A., Rajendran, A. M., and Zikry, M. A., “A Micromechanical Model for Damage Progression in Woven Composite Systems,” International Journal of Solids and Structures, Vol. 41, No. 9–10, pp. 2307–2330, 2004.

    Article  MATH  Google Scholar 

  3. Ahn, S. S., Hong, S. W., Koo, J. M., and Seok, C. S., “Prediction of Compressive Strength of CFRP Composite Structures using Notch Strength,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 6, pp. 1103–1108, 2013.

    Article  Google Scholar 

  4. Tension-Compression and Tension-Tension Fatigue Life of Woven Fabric Glass/Epoxy Laminate Composites used in Railway Vehicle, Int. J. Precis. Eng. Manuf., Vol. 12, No. 5, pp. 813–820, 2011.

    Article  Google Scholar 

  5. Kim, S. C., Kim, J. S., and Yoon, H. J., “Experimental and Numerical Investigations of Mode I Delamination behaviors of Woven Fabric Composites with Carbon, Kevlar and their Hybrid Fibers,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 2, pp. 321–329, 2011.

    Article  MathSciNet  Google Scholar 

  6. Baucom, J. N. and Zikry, M. A., “Evolution of Failure Mechanisms in 2D and 3D Woven Composite Systems under Quasi-Static Perforation,” Journal of Composite Materials, Vol. 37, No. 18, pp. 1651–1674, 2003.

    Article  Google Scholar 

  7. Kwon, Y. W. and Berner, J., “Analysis of Matrix Damage Evolution in Laminated Composite Plates,” Engineering Fracture Mechanics, Vol. 48, No. 6, pp. 811–817, 1994.

    Article  Google Scholar 

  8. Lee, J. D., “Three Dimensional Finite Element analysis of Damage Accumulation in Composite Laminate,” Computers & Structures, Vol. 15, No. 3, pp. 335–350, 1982.

    Article  MATH  Google Scholar 

  9. Haberle, J. G. and Matthews, F. L., “The Influence of Test Method on the Compressive Strength of Several Fiber-Reinforced Plastics,” Journal of Advanced Materials, Vol. 25, No. 1, pp. 35–45, 1993.

    Google Scholar 

  10. Chang, F. K. and Kutlu, Z., “Strength and Response of Cylindrical Composite Shells Subjected to Out-of-Plane Loadings,” Journal of Composite Materials, Vol. 23, No. 1, pp. 11–31, 1989.

    Article  Google Scholar 

  11. Hong, S. W., Ahn, S. S., Li, H., Kim, J. K., Ko, S. J., and et al., “Charpy Impact Fracture Characteristics of CFRP Composite Materials according to Variations of Fiber Array Direction and Temperature,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 2, pp. 253–258, 2013.

    Article  Google Scholar 

  12. Kim, S. J. and Chang, S. H., “The Effect of Bias and Shear Angles on Compressive Characteristics of Carbon/Epoxy Plain Weave Fabrics,” Transactions of the KSME. A, Vol. 30, No. 7, pp. 857–864, 2006.

    Google Scholar 

  13. Hamada, H., Maekawa, Z. I., and Haruna, K., “Strength Prediction of Mechanically Fastened Quasi-Isotropic Carbon/Epoxy Joints,” Journal of Composite Materials, Vol. 30, No. 14, pp. 1596–1612, 1996.

    Article  Google Scholar 

  14. Starnes, J. H., Rhodes, M. D., and Williams, J. G., “Effect of Impact Damage and Holes on the Compressive Strength of a Graphite/ Epoxy Laminate,” Nondestructive Evaluation and Flaw Criticality for Composite Materials, ASTM STP, Vol. 696, No. 1979, pp. 145–171, 1979.

    Article  Google Scholar 

  15. Kinsey, A., Saunders, D. E. J., and Soutis, C., “Post-Impact Compressive behaviour of Low Temperature Curing Woven CFRP Laminates,” Composites, Vol. 26, No. 9, pp. 661–667, 1995.

    Article  Google Scholar 

  16. Caprino, G., “On the Prediction of Residual Strength for Notched Laminates,” Journal of Materials Science, Vol. 18, No. 8, pp. 2269–2273, 1983.

    Article  Google Scholar 

  17. Caprino, G., “Residual Strength Prediction of Impacted CFRP Laminates,” Journal of Composite Materials, Vol. 18, No. 6, pp. 508–518, 1984.

    Article  Google Scholar 

  18. Cui, H. P., Wen, W. D., and Cui, H. T., “An Integrated Method for Predicting Damage and Residual Tensile Strength of Composite Laminates under Low Velocity Impact,” Computers & Structures, Vol. 87, No. 7, pp. 456–466, 2009.

    Article  Google Scholar 

  19. Davies, G. A. O., Hitchings, D., and Zhou, G., “Impact Damage and Residual Strengths of Woven Fabric Glass/Polyester Laminates,” Composites Part A: Applied Science and Manufacturing, Vol. 27, No. 12, pp. 1147–1156, 1996.

    Article  Google Scholar 

  20. Chen, V. L., Wu, H. Y. T., and Yeh, H. Y., “A Parametric Study of Residual Strength and Stiffness for Impact Damaged Composites,” Composite Structures, Vol. 25, No. 1, pp. 267–275, 1993.

    Article  Google Scholar 

  21. Koo, J. M., Choi, J. H., and Seok, C. S., “Prediction of Residual Strength of CFRP after Impact,” Composites Part B: Engineering, Vol. 54, pp. 28–33, 2013.

    Article  Google Scholar 

  22. Koo, J. M., Choi, J. H., and Seok, C. S., “Evaluation for Residual Strength and Fatigue Characteristics after Impact in CFRP Composites,” Composite Structures, Vol. 105, pp. 58–65, 2013.

    Article  Google Scholar 

  23. Kim, S. Y., Geum, J. H., Koo, J. M., and Seok, C. S., “Study of Failure Criterion of Hole-Notched Plain-Weave Carbon Fiber Reinforced Plastic (CFRP) Composites,” Transactions of The Korean Society of Mechanical Engineers A, Vol. 34, No. 4, pp. 481–486, 2010.

    Article  Google Scholar 

  24. Whitney, J. M. and Nuismer, R., “Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations,” Journal of Composite Materials, Vol. 8, No. 3, pp. 253–265, 1974.

    Article  Google Scholar 

  25. Nuismer, R. J. and Whitney, J. M., “Uniaxial Failure of Composite Laminates Containing Stress Concentrations,” Fracture Mechanics of Composites, ASTM STP, Vol. 593, pp. 117–142, 1975.

    Article  Google Scholar 

  26. Pipes, R. B., Gillespie, J. W., and Wetherhold, R. C., “Superposition of the Notched Strength of Composite Laminates,” Polymer Engineering & Science, Vol. 19, No. 16, pp. 1151–1155, 1979.

    Article  Google Scholar 

  27. Ahmed, K. S., Vijayarangan, S., and Naidu, A., “Elastic Properties, Notched Strength and Fracture Criterion in Untreated Woven Jute-Glass Fabric Reinforced Polyester Hybrid Composites,” Materials & Design, Vol. 28, No. 8, pp. 2287–2294, 2007.

    Article  Google Scholar 

  28. Kim, J. K., Kim, D. S., and Takeda, N., “Notched Strength and Fracture Criterion in Fabric Composite Plates Containing a Circular Hole,” Journal of Composite Materials, Vol. 29, No. 7, pp. 982–998, 1995.

    Article  Google Scholar 

  29. Tan, S. C., “Finite-Width Correction Factors for Anisotropic Plate Containing a Central Opening,” Journal of Composite Materials, Vol. 22, No. 11, pp. 1080–1097, 1988.

    Article  Google Scholar 

  30. Kim, J. K., Kim, D. S., and Takeda, N., “Notched Strength and Fracture Criterion in Fabric Composite Plates Containing a Circular Hole,” Journal of Composite Materials, Vol. 29, No. 7, pp. 982–998, 1995.

    Article  Google Scholar 

  31. Kim, S. Y., Koo, J. M., Kim, D., and Seok, C. S., “Prediction of the Static Fracture Strength of Hole Notched Plain Weave CFRP Composites,” Composites Science and Technology, Vol. 71, No. 14, pp. 1671–1676, 2011.

    Article  Google Scholar 

  32. Ahn, S. S., Hong, S. W., Koo, J. M., and Seok, C. S., “Prediction of Compressive Strength of CFRP Composite Structures using Notch Strength,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 6, pp. 1103–1108, 2013.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Sung Seok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koo, JM., Choi, JH. & Seok, CS. Prediction of residual strength after impact of CFRP composite structures. Int. J. Precis. Eng. Manuf. 15, 1323–1329 (2014). https://doi.org/10.1007/s12541-014-0472-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-014-0472-0

Keywords

Navigation