Skip to main content
Log in

Italian Society for the Study of Diabetes (SID)/Italian Endocrinological Society (SIE) guidelines on the treatment of hyperglycemia in Cushing’s syndrome and acromegaly

  • Consensus Statement
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Hyperglycemia is a common feature associated with states of increased growth hormone secretion and glucocorticoid levels. The purpose of these guidelines is to assist clinicians and other health care providers to take evidence-based therapeutic decisions for the treatment of hyperglycemia in patients with growth hormone and corticosteroid excess. Both the SID and SIE appointed members to represent each society and to collaborate in Guidelines writing. Members were chosen for their specific knowledge in the field. Each member agreed to produce—and regularly update—conflicts of interest. The authors of these guidelines prepared their contributions following the recommendations for the development of Guidelines, using the standard classes of recommendation shown below. All members of the writing committee provided editing and systematic review of each part of the manuscript, and discussed the grading of evidence. Consensus was guided by a systematic review of all available trials and by interactive discussions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Kasayama S, Otsuki M, Takagi M, Saito H, Sumitani S, Kouhara H, Koga M, Saitoh Y, Ohnishi T, Arita N (2000) Impaired β-cell function in the presence of reduced insulin sensitivity determines glucose tolerance status in acromegalic patients. Clin Endocrinol (Oxf) 52:549–555

    Article  CAS  Google Scholar 

  2. Dekkers OM, Biermasz NR, Pereira AM, Romijn JA, Vandenbroucke JP (2008) Mortality in acromegaly: a meta analysis. J Clin Endocrinol Metab 93:61–67

    Article  PubMed  CAS  Google Scholar 

  3. Jaffrain-Rea ML, Moroni C, Baldelli R, Battista C, Maffei P, Terzolo M, Correra M, Ghiggi MR, Ferretti E, Angeli A, Sicolo N, Trischitta V, Liuzzi A, Cassone R, Tamburrano G (2001) Relationship between blood pressure and glucose tolerance in acromegaly. Clin Endocrinol (Oxf) 54:189–195

    Article  CAS  Google Scholar 

  4. Holdaway IM, Rajasoorya RC, Gamble GD (2004) Factors influencing mortality in acromegaly. J Clin Endocrinol Metab 89:667–674

    Article  PubMed  CAS  Google Scholar 

  5. Colao A, Baldelli R, Marzullo P, Ferretti E, Ferone D, Gargiulo P, Petretta M, Tamburrano G, Lombardi G, Liuzzi A (2000) Systemic hypertension and impaired glucose tolerance are independently correlated to the severity of the acromegalic cardiomyopathy. J Clin Endocrinol Metab 85:193–199

    PubMed  CAS  Google Scholar 

  6. Colao A, Ferone D, Marzullo P, Lombardi G (2004) Systemic complications of acromegaly: epidemiology, pathogenesis, and management. Endocr Rev 25:102–152

    Article  PubMed  CAS  Google Scholar 

  7. Biering H, Knappe G, Gerl H, Lochs H (2000) Prevalence of diabetes in acromegaly and Cushing syndrome. Acta Med Austriaca 27:27–31

    Article  PubMed  CAS  Google Scholar 

  8. Kreze A, Kreze-Spirova E, Mikulecky M (2001) Risk factors for glucose intolerance in active acromegaly. Braz J of Med Biol Res 34:1429–1433

    Article  CAS  Google Scholar 

  9. Fieffe S, Morange I, Petrossians P, Chanson P, Rohmer V, Cortet C, Borson-Chazot F, Brue T, French Acromegaly Registry (2011) Diabetes in acromegaly, prevalence, risk factors, and evolution: data from the French Acromegaly Registry. Eur J Endocrinol 164:877–884

    Article  PubMed  CAS  Google Scholar 

  10. Nabarro JDN (1987) Acromegaly. Clin Endocrinol (Oxf) 26:481–512

    Article  CAS  Google Scholar 

  11. Clayton RN, Raskauskiene D, Reulen RC, Jones PW (2011) Mortality and morbidity in Cushing’s disease over 50 years in Stoke-on-Trent, UK: audit and meta-analysis of literature. J Clin Endocrinol Metab 96:632–642

    Article  PubMed  CAS  Google Scholar 

  12. Etxabe J, Vazquez JA (1994) Morbidity and mortality in Cushing’s disease: an epidemiological approach. Clin Endocrinol (Oxf) 40:479–484

    Article  CAS  Google Scholar 

  13. Dekkers OM, Biermasz NR, Pereira AM, Roelfsema F, van Aken MO, Voormolen JH, Romijn JA (2007) Mortality in patients treated for Cushing’s disease is increased, compared with patients treated for nonfunctioning pituitary macroadenoma. J Clin Endocrinol Metab 92:976–981

    Article  PubMed  CAS  Google Scholar 

  14. Clore JN, Thurby-Hay L (2009) Glucocorticoid-induced hyperglycemia. Endocr Pract 15:469–474

    Article  PubMed  Google Scholar 

  15. Mazziotti G, Gazzaruso C, Giustina A (2011) Diabetes in Cushing syndrome: basic and clinical aspects. Trends Endocrinol Metab 22:499–506

    Article  PubMed  CAS  Google Scholar 

  16. Friedman TC, Mastorakos G, Newman TD, Mullen NM, Horton EG, Costello R, Papadopoulos NM, Chrousos GP (1996) Carbohydrate and lipid metabolism in endogenous hypercortisolism: shared features with metabolic syndrome X and NIDDM. Endocr J 43:645–655

    Article  PubMed  CAS  Google Scholar 

  17. Mancini T, Kola B, Mantero F, Boscaro M, Arnaldi G (2004) High cardiovascular risk in patients with Cushing’s syndrome according to 1999 WHO/ISH guidelines. Clin Endocrinol (Oxf) 61:768–777

    Article  Google Scholar 

  18. Uzu T, Harada T, Sakaguchi M, Kanasaki M, Isshiki K, Araki S, Sugiomoto T, Koya D, Haneda M, Kashiwagi A, Yamauchi A (2007) Glucocorticoid-induced diabetes mellitus: prevalence and risk factors in primary renal diseases. Nephron Clin Pract 105:c54–c57

    Article  PubMed  CAS  Google Scholar 

  19. Iwamoto T, Kagawa Y, Naito Y, Kuzuhara S, Kojima M (2004) Steroid-induced diabetes mellitus and related risk factors in patients with neurologic diseases. Pharmacotherapy 24:508–514

    Article  PubMed  Google Scholar 

  20. Giordano C, Guarnotta V, Pivonello R, Amato MC, Simeoli C, Ciresi A, Cozzolino A, Colao A (2014) Is diabetes in Cushing’s syndrome only a consequence of hypercortisolism? Eur J Endocrinol 170:311–319

    Article  PubMed  CAS  Google Scholar 

  21. Rizza RA, Mandarino LJ, Gerich JE, Effects of growth hormone on insulin action in man (1982) Mechanisms of insulin resistance, impaired suppression of glucose production, and impaired stimulation of glucose utilization. Diabetes 31:663–669

    Article  PubMed  CAS  Google Scholar 

  22. Moller N, Schmitz O, Jorgensen JO, Astrup J, Bak JF, Christensen SE, Alberti KG, Weeke J (1992) Basal and insulin-stimulated substrate metabolism in patients with active acromegaly before and after adenomectomy. J Clin Endocrinol Metab 74:1012–1019

    PubMed  CAS  Google Scholar 

  23. Moller N, Butler PC, Antsiferov MA, Alberti KG (1989) Effects of growth hormone on insulin sensitivity and forearm metabolism in normal man. Diabetologia 32:105–110

    Article  PubMed  CAS  Google Scholar 

  24. Nielsen S, Moller N, Christiansen JS, Jorgensen JO (2001) Pharmacological antilipolysis restores insulin sensitivity during growth hormone exposure. Diabetes 50:2301–2308

    Article  PubMed  CAS  Google Scholar 

  25. Bramnert M, Segerlantz M, Laurila E, Daugaard JR, Manhem P, Groop L (2003) Growth hormone replacement therapy induces insulin resistance by activating the glucose–fatty acid cycle. J Clin Endocrinol Metab 88:1455–1463

    Article  PubMed  CAS  Google Scholar 

  26. Dominici FP, Cifone D, Bartke A, Turyn D (1999) Loss of sensitivity to insulin at early events of the insulin signaling pathway in the liver of growth hormone transgenic mice. J Endocrinol 161:383–392

    Article  PubMed  CAS  Google Scholar 

  27. Giorgino F, Pedrini MT, Matera L, Smith RJ (1997) Specific increase in p85α expression in response to dexamethasone is associated with inhibition of Insulin-like Growth Factor-I stimulated phosphatidylinosito I 3-kinase activity in cultured muscle cells. J Biol Chem 272:7455–7463

    Article  PubMed  CAS  Google Scholar 

  28. Barbour LA, Rahman SM, Gurevich I, Leitner JW, Fischer SJ, Roper MD, Knotts TA, McCurdy CE, Yakar S, LeRoith D, Kahn CR, Cantley LC, Friedman JE, Draznin B (2005) Increased p85α is a potent negative regulator of skeletal muscle insulin signaling and induces in vivo insulin resistance associated with growth hormone excess. J Biol Chem 280:37489–37494

    Article  PubMed  CAS  Google Scholar 

  29. Del Rincon JP, Iida K, Gaylinn BD, McCurdy CE, Leitner JW, Barbour LA, Kopchick JJ, Friedman JE, Draznin B, Thorner MO (2007) Growth hormone regulation of p85α expression and phosphoinositide 3-kinase activity in adipose tissue: mechanism for growth hormone-mediated insulin resistance. Diabetes 56:1638–1646

    Article  PubMed  CAS  Google Scholar 

  30. Moller N, Jorgensen JO (2009) Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr Rev 30:152–177

    Article  PubMed  CAS  Google Scholar 

  31. van Raalte DH, Ouwens DM, Diamant M (2009) Novel insights into glucocorticoid-mediated diabetogenic effects: towards expansion of therapeutic options? Eur J Clin Invest 39:81–93

    Article  PubMed  CAS  Google Scholar 

  32. McMahon M, Gerich J, Rizza R (1988) Effects of glucocorticoids on carbohydrate metabolism. Diabetes Metab Rev 4:17–30

    Article  PubMed  CAS  Google Scholar 

  33. Kraus-Friedman N (1984) Hormonal regulation of hepatic gluconeogenesis. Physiol Rev 64:170–259

    Google Scholar 

  34. Dirlewanger M, Schneiter PH, Paquot N, Jequier E, Rey V, Tappy L (2000) Effects of glucocorticoids on hepatic sensitivity to insulin and glucagon in man. Clin Nutr 19:29–34

    Article  PubMed  CAS  Google Scholar 

  35. Giorgino F, Almahfouz A, Goodyear LJ, Smith RJ (1993) Glucocorticoid regulation of insulin receptor and substrate IRS-1 tyrosine phosphorylation in rat skeletal muscle in vivo. J Clin Invest 91:2020–2030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Pivonello R, De Leo M, Vitale P, Cozzolino A, Simeoli C, De Martino MC, Lombardi G, Colao A (2010) Pathophysiology of diabetes mellitus in Cushing’s syndrome. Neuroendocrinology 92(Suppl 1):77–81

    Article  PubMed  CAS  Google Scholar 

  37. Rondinone CM (2006) Adipocyte-derived hormones, cytokines, and mediators. Endocrine 29:81–90

    Article  PubMed  CAS  Google Scholar 

  38. Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:2548–2556

    Article  PubMed  CAS  Google Scholar 

  39. Gremlich S, Roduit R, Thorens B (1997) Dexamethasone induces posttranslational degradation of GLUT2 and inhibition of insulin secretion in isolated pancreatic beta cells. Comparison with the effects of fatty acids. J Biol Chem 272:3216–3222

    Article  PubMed  CAS  Google Scholar 

  40. Pagano G, Cavallo-Perin P, Cassader M, Bruno A, Ozzello A, Masciola P, Dall’Omo AM, Imbimbo B (1983) An in vivo and in vitro study of the mechanism of prednisone- induced insulin resistance in healthy subjects. J Clin Invest 72:1814–1820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Wajngot A, Giacca A, Grill V, Vranic M, Efendic S (1992) The diabetogenic effects of glucocorticoids are more pro- nounced in low- than in high-insulin responders. Proc Natl Acad Sci USA 89:6035–6039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Melmed S, Colao A, Barkan A, Molitch M, Grossman AB, Kleinberg D, Clemmons D, Chanson P, Laws E, Schlechte J, Vance ML, Ho K, Giustina A (2009) Guidelines for acromegaly management: an update. J Clin Endocrinol Metab 94:1509–1517

    Article  PubMed  CAS  Google Scholar 

  43. Giustina A, Chanson P, Bronstein MD, Klibanski A, Lamberts S, Casanueva FF, Trainer P, Ghigo E, HO K, Melmed S (2010) A consensus on criteria for cure of acromegaly. J Clin Endocrinol Metab 95:3141–3148

    Article  PubMed  CAS  Google Scholar 

  44. Katznelson L, Atkinson JLD, Cook DM, Ezzat SZ, Hamrahian AH, Miller KK (2011) Medical guidelines for clinical practice for the diagnosis and treatment of acromegaly: 2011 Update. Endocr Pract 17(Suppl 4):1–44

    Article  PubMed  Google Scholar 

  45. Colao A, Martino E, Cappabianca P, Cozzi R, Scanarini M, First-line Ghigo E (2006) Therapy of acromegaly: a statement of the A.L.I.C.E. (Acromegaly Primary Medical Treatment Learning and Improvement with Continuous Medical Education) Study Group. J Endocrinol Invest 29:1017–1020

    Article  PubMed  CAS  Google Scholar 

  46. Colao A, Ferone D, Cappabianca P, del Basso De Caro ML, Marzullo P, Monticelli A, Alfieri A, Merola B, Calì A, Divitiis E, Lombardi G (1997) Effect of octreotide pretreatment on surgical outcome in acromegaly. J Clin Endocrinol Metab 82:3308–3314

    Article  PubMed  CAS  Google Scholar 

  47. Colao A, Ferone D, Marzullo P, Di Sarno A, Cerbone G, Sarnacchiaro F, Cirillo S, Merola B, Lombardi G (1997) Effect of different dopaminergic agents in the treatment of acromegaly. J Clin Endocrinol Metab 82:518–523

    Article  PubMed  CAS  Google Scholar 

  48. Melmed S, Sternberg R, Cook D, Klibanski A, Chanson P, Bonert V, Vance ML, Rhew D, Kleinberg D, Barkan A (2005) A critical analysis of pituitary tumor shrinkage during primary medical therapy in acromegaly. J Clin Endocrinol Metab 90(4405):4410

    Google Scholar 

  49. Cozzi R, Attanasio R, Montini M, Pagani G, Lasio G, Lodrini S, Barausse M, Albizzi M, Dallabonzana D, Pedroncelli AM (2003) Four-year treatment with octreotide-long-acting repeatable in 110 acromegalic patients: predictive value of short-term results. J Clin Endocrinol Metab 88:3090–3098

    Article  PubMed  CAS  Google Scholar 

  50. Colao A, Pivonello R, Rosato F, Tita P, De Menis E, Barreca A, Ferrara R, Mainini F, Arosio M, Lombardi G (2006) First-line octreotide-LAR therapy induces tumour shrinkage and controls hormone excess in patients with acromegaly: results from an open, prospective, multicentre trial. Clin Endocrinol (Oxf) 64:342–351

    Article  CAS  Google Scholar 

  51. Trainer PJ, Drake WM, Katznelson L, Freda PU, Herman-Bonert V, van der Lely AJ, Dimaraki EV, Stewart PM, Friend KE, Vance ML, Besser GM, Scarlett JA, Thorner MO, Parkinson C, Klibanski A, Powell JS, Barkan AL, Sheppard MC, Malsonado M, Rose DR, Clemmons DR, Johannsson G, Bengtsson BA, Stavrou S, Kleinberg DL, Cook DM, Phillips LS, Bidlingmaier M, Strasburger CJ, Hackett S, Zib K, Bennett WF, Davis RJ (2000) Treatment of acromegaly with the growth hormone-receptor antagonist pegvisomant. N Engl J Med 342:1171–1177

    Article  PubMed  CAS  Google Scholar 

  52. van der Lely AJ, Hutson RK, Trainer PJ, Besser GM, Barkan AL, Katznelson L, Klibanski A, Herman-Bonert V, Melmed S, Vance ML, Freda PU, Stewart PM, Friend KE, Clemmons DR, Johannsson G, Stavrou S, Cook DM, Phillips LS, Strasburger CJ, Hackett S, Zib KA, Davis RJ, Scarlett JA, Thorner MO (2001) Long-term treatment of acromegaly with pegvisomant, a growth hormone receptor antagonist. Lancet 358:1754–1759

    Article  PubMed  Google Scholar 

  53. Wasada T, Aoki K, Sato A, Katsumori K, Muto K, Tomonaga O, Yokoyama H, Iwasaki N, Babazono T, Takahashi C, Iwamoto Y, Omori Y, Hizuka N (1997) Assessment of insulin resistance in acromegaly associated with diabetes mellitus before and after transsphenoidal adenomectomy. Endocr J 44:617–620

    Article  PubMed  CAS  Google Scholar 

  54. Kinoshita Y, Fujii H, Takeshita A, Taguchi M, Miyakawa M, Oyama K, Yamada S, Takeuchi Y (2011) Impaired glucose metabolism in Japanese patients with acromegaly is restored after successful pituitary surgery if pancreatic β-cell function is preserved. Eur J Endocrinol 164:467–473

    Article  PubMed  CAS  Google Scholar 

  55. Battezzati A, Benedini S, Fattorini A, Losa M, Mortini P, Bertoli S, Lanzi R, Testolin G, Biolo G, Luzi L (2003) Insulin action on protein metabolism in acromegalic patients. Am J Physiol Endocrinol Metab 284:E823–E829

    Article  PubMed  CAS  Google Scholar 

  56. Mori K, Iwasaki Y, Kawasaki-Ogita Y, Honjo S, Hamamoto Y, Tatsuoka H, Fujimoto K, Ikeda H, Wada Y, Takahashi Y, Takahashi J, Koshiyama H (2013) Improvement of insulin resistance following transsphenoidal surgery in patients with acromegaly: correlation with serum IGF-I levels. J Endocrinol Invest 36:853–859

    PubMed  CAS  Google Scholar 

  57. Colao A, Auriemma RS, Galdiero M, Cappabianca P, Cavallo LM, Esposito F, Grasso LF, Lombardi G, Pivonello R (2009) Impact of somatostatin analogs versus surgery on glucose metabolism in acromegaly: results of a 5-year observational, open, prospective study. J Clin Endocrinol Metab 94:528–537

    Article  PubMed  CAS  Google Scholar 

  58. Tzanela M, Vassiliadi DA, Gavalas N, Szabo A, Margelou E, Valatsou A, Vassilopoulos C (2011) Glucose homeostasis in patients with acromegaly treated with surgery or somatostatin analogues. Clin Endocrinol (Oxf) 75:96–102

    Article  CAS  Google Scholar 

  59. Giordano C, Ciresi A, Amato MC, Pivonello R, Auriemma RS, Grasso LF, Galluzzo A, Colao A (2012) Clinical and metabolic effects of first-line treatment with somatostatin analogues or surgery in acromegaly: a retrospective and comparative study. Pituitary 15:539–551

    Article  PubMed  CAS  Google Scholar 

  60. Stelmachowska-Banaś M, Zieliński G, Zdunowski P, Podgórski J, Zgliczyński W (2011) The impact of transsphenoidal surgery on glucose homeostasis and insulin resistance in acromegaly. Neurol Neurochir Pol 45:328–334

    PubMed  Google Scholar 

  61. Barrande G, Pittino-Lungo M, Coste J, Ponvert D, Bertagna X, Luton JP, Bertherat J (2000) Hormonal and metabolic effects of radiotherapy in acromegaly: long-term results in 128 patients followed in a single center. J Clin Endocrinol Metab 85:3779–3785

    Article  PubMed  CAS  Google Scholar 

  62. Jezková J, Marek J, Hána V, Krsek M, Weiss V, Vladyka V, Lisák R, Vymazal J, Pecen L (2006) Gamma knife radiosurgery for acromegaly–long-term experience. Clin Endocrinol (Oxf) 64:588–595

    Article  Google Scholar 

  63. Lee CC, Vance ML, Xu Z, Yen CP, Schlesinger D, Dodson B, Sheehan J (2014) Stereotactic radiosurgery for acromegaly. J Clin Endocrinol Metab 99:1273–1281

    Article  PubMed  CAS  Google Scholar 

  64. Fedele D, Molinari M, Meneghel A, Valerio A, Muggeo M, Tiengo A (1980) Bromocriptine acute effect on insulin, glucagon and growth hormone levels in acromegalic patients. J Endocrinol Invest 3:149–153

    Article  PubMed  CAS  Google Scholar 

  65. Feek CM, Bevan JS, Taylor S, Brown NS, Baird JD (1981) The effect of bromocriptine on insulin secretion and glucose tolerance in patients with acromegaly. Clin Endocrinol (Oxf) 15:473–478

    Article  CAS  Google Scholar 

  66. Dolecek R, Kubis M, Sajnar J, Závada M (1982) Bromocriptine and glucose tolerance in acromegalics. Pharmatherapeutica 3:100–106

    PubMed  CAS  Google Scholar 

  67. Chiba T, Chihara K, Minamitani N, Goto B, Kadowaki S, Taminato T, Matsukura S, Fujita T (1982) Effect of long term bromocriptine treatment on glucose intolerance in acromegaly. Horm Metab Res 14:57–61

    Article  PubMed  CAS  Google Scholar 

  68. Rau H, Althoff PH, Schmidt K, Badenhoop K, Usadel KH (1993) Bromocriptine treatment over 12 years in acromegaly: effect on glucose tolerance and insulin secretion. Clin Investig 71:372–378

    Article  PubMed  CAS  Google Scholar 

  69. Roemmler J, Steffin B, Gutt B, Schneider HJ, Sievers C, Bidlingmaier M, Schopohl J (2010) The acute effect of a single application of cabergoline on endogenous GH levels in patients with acromegaly on pegvisomant treatment. Growth Horm IGF Res 20:338–344

    Article  PubMed  CAS  Google Scholar 

  70. Higham CE, Atkinson AB, Aylwin S, Bidlingmaier M, Drake WM, Lewis A, Martin NM, Moyes V, Newell-Price J, Trainer PJ (2012) Effective combination treatment with cabergoline and low-dose pegvisomant in active acromegaly: a prospective clinical trial. J Clin Endocrinol Metab 97:1187–1193

    Article  PubMed  CAS  Google Scholar 

  71. Parkinson C, Drake WM, Roberts ME, Meeran K, Besser GM, Trainer PJ (2002) A comparison of the effects of pegvisomant and octreotide on glucose, insulin, gastrin, cholecystokinin, and pancreatic polypeptide responses to oral glucose and a standard mixed meal. J Clin Endocrinol Metab 87:1797–1804

    Article  PubMed  CAS  Google Scholar 

  72. Breitschaft A, Hu K, Hermosillo Reséndiz K, Darstein C, Golor G (2014) Management of hyperglycemia associated with pasireotide (SOM230): healthy volunteer study. Diabetes Res Clin Pract 103:458–465

    Article  PubMed  CAS  Google Scholar 

  73. McKnight JA, McCance DR, Crothers JG, Atkinson AB (1989) Changes in glucose tolerance and development of gall stones during high dose treatment with octreotide for acromegaly. Br Med J 299:604–605

    Article  CAS  Google Scholar 

  74. James RA, Møller N, Chatterjee S, White M, Kendall-Taylor P (1991) Carbohydrate tolerance and serum lipids in acromegaly before and during treatment with high dose octreotide. Diabet Med 8:517–523

    Article  PubMed  CAS  Google Scholar 

  75. Koop BL, Harris AG, Ezzat S (1994) Effect of octreotide on glucose tolerance in acromegaly. Eur J Endocrinol 130:581–586

    Article  PubMed  CAS  Google Scholar 

  76. Breidert M, Pinzer T, Wildbrett J, Bornstein SR, Hanefeld M (1995) Long-term effect of octreotide in acromegaly on insulin resistance. Horm Metab Res 27:226–230

    Article  PubMed  CAS  Google Scholar 

  77. Arosio M, Macchelli S, Rossi CM, Casati G, Biella O, Faglia G (1995) Effects of treatment with octreotide in acromegalic patients–a multicenter Italian study. Italian Multicenter Octreotide Study Group. Eur J Endocrinol 133:430–439

    Article  PubMed  CAS  Google Scholar 

  78. Hizuka N (1997) Divergent effects of octreotide on glucose tolerance in patients with acromegaly. Intern Med 36:319–320

    Article  PubMed  CAS  Google Scholar 

  79. Steffin B, Gutt B, Bidlingmaier M, Dieterle C, Oltmann F, Schopohl J (2006) Effects of the long-acting somatostatin analogue Lanreotide Autogel on glucose tolerance and insulin resistance in acromegaly. Eur J Endocrinol 155:73–78

    Article  PubMed  CAS  Google Scholar 

  80. Mazziotti G, Floriani I, Bonadonna S, Torri V, Chanson P, Giustina A (2009) Effects of somatostatin analogs on glucose homeostasis: a metaanalysis of acromegaly studies. J Clin Endocrinol Metab 94:1500–1508

    Article  PubMed  CAS  Google Scholar 

  81. Ronchi C, Epaminonda P, Cappiello V, Beck-Peccoz P, Arosio M (2002) Effects of two different somatostatin analogs on glucose tolerance in acromegaly. J Endocrinol Invest 25:502–507

    Article  PubMed  CAS  Google Scholar 

  82. Ronchi C, Varca V, Beck-Peccoz P, Orsi E, Donadio F, Baccarelli A, Giavoli C, Ferrante E, Lania A, Spada A, Arosio M (2006) Comparison between six-yeartherapy with long-acting somatostatin analogs and successful surgery in acromegaly: effects on cardiovascular risk factors. J Clin Endocrinol Metab 91:121–128

    Article  PubMed  CAS  Google Scholar 

  83. Baldelli R, Battista C, Leonetti F, Ghiggi MR, Ribaudo MC, Paoloni A, D’Amico E, Ferretti E, Baratta R, Liuzzi A, Trischitta V, Tamburrano G (2003) Glucose homeostasis in acromegaly: effects of long-acting somatostatin analogues treatment. Clin Endocrinol (Oxf) 59:492–499

    Article  CAS  Google Scholar 

  84. Cozzi R, Montini M, Attanasio R, Albizzi M, Lasio G, Lodrini S, Doneda P, Cortesi L, Pagani G (2006) Primary treatment of acromegaly with octreotide LAR: a long-term (up to nine years) prospective stuidy of its efficacy in the control of disease activity and tumor shrinkage. J Clin Endocrinol Metab 91:1397–1403

    Article  PubMed  CAS  Google Scholar 

  85. Colao A, Auriemma RS, Savastano S, Galdiero M, Grasso LF, Lombardi G, Pivonello R (2009) Glucose tolerance and somatostatin analog treatment in acromegaly: a 12-month study. J Clin Endocrinol Metab 94:2907–2914

    Article  PubMed  CAS  Google Scholar 

  86. Mazziotti G, Porcelli T, Bogazzi F, Bugari G, Cannavò S, Colao A, Cozzi R, De Marinis L, degli Uberti E, Grottoli S, Minuto F, Montini M, Spinello M, Giustina A (2011) Effects of high-dose octreotide LAR on glucose metabolism in patients with acromegaly inadequately controlled by conventional somatostatin analog therapy. Eur J Endocrinol 164:341–347

    Article  PubMed  CAS  Google Scholar 

  87. Couture E, Bongard V, Maiza JC, Bennet A, Caron P (2012) Glucose status in patients with acromegaly receiving primary treatment with the somatostatin analog lanreotide. Pituitary 15:518–525

    Article  PubMed  CAS  Google Scholar 

  88. Cambuli VM, Galdiero M, Mastinu M, Pigliaru F, Auriemma RS, Ciresi A, Pivonello R, Amato M, Giordano C, Mariotti S, Colao A, Baroni MG (2012) Glycometabolic control in acromegalic patients with diabetes: a study of the effects of different treatments for growth hormone excess and for hyperglycemia. J Endocrinol Invest 35:154–159

    PubMed  CAS  Google Scholar 

  89. Feelders RA, de Herder WW, Neggers SJ, van der Lely AJ, Hofland LI (2013) Pasireotide, a multi-somatostatin receptor ligand with potential efficacy for treatment of pituitary and neuroendocrine tumors. Drugs Today (Barc) 49:89–103

    Article  CAS  Google Scholar 

  90. Colao A, Bronstein MD, Freda P, Gu F, Shen CC, Gadelha M, Fleseriu M, van der Lely AJ, Farrall AJ, Hermosillo Reséndiz K, Ruffin M, Chen Y, Sheppard M; Pasireotide C2305 Study Group (2014) Pasireotide versus octreotide in acromegaly: a head-to-head superiority study. J Clin Endocrinol Metab 99:791–799

    PubMed  PubMed Central  CAS  Google Scholar 

  91. Gadelha MR, Bronstein MD, Brue T, Coculescu M, Fleseriu M, Guitelman M, Pronin V, Raverot G, Shimon I, Lievre KK, Fleck J, Aout M, Pedroncelli AM, Colao A, Pasireotide C2402 Study Group (2014) Pasireotide versus continued treatment with octreotide or lanreotide in patients with inadequately controlled acromegaly (PAOLA): a randomised, phase 3 trial. Lancet Diabetes Endocrinol 2:875–884

    Article  PubMed  CAS  Google Scholar 

  92. Petersenn S, Schopohl J, Barkan A, Mohideen P, Colao A, Abs R, Buchelt A, Ho YY, Hu K, Farrall AJ, Melmed S, Biller BM, Pasireotide Acromegaly Study Group (2010) Pasireotide (SOM230) demonstrates efficacy and safety in patients with acromegaly: a randomized, multicenter, phase II trial. J Clin Endocrinol Metab 95:2781–2789

    Article  PubMed  CAS  Google Scholar 

  93. Sheppard M, Bronstein MD, Freda P, Serri O, De Marinis L, Naves L, Rozhinskaya L, Hermosillo Reséndiz K, Ruffin M, Chen Y, Colao A (2014) Pasireotide LAR maintains inhibition of GH and IGF-1 in patients with acromegaly for up to 25 months: results from the blinded extension phase of a randomized, double-blind, multicenter, phase III study. Pituitary 18:385–394

    Article  PubMed Central  CAS  Google Scholar 

  94. Sesmilo G, Fairfield WP, Katznelson L, Pulaski K, Freda PU, Bonert V, Dimaraki E, Stavrou S, Vance ML, Hayden D, Klibanski A (2002) Cardiovascular risk factors in acromegaly before and after normalization of serum IGF-I levels with the GH antagonist pegvisomant. J Clin Endocrinol Metab 87:1692–1699

    Article  PubMed  CAS  Google Scholar 

  95. Parkinson C, Whatmore AJ, Yates AP, Drake WM, Brabant G, Clayton PE, Trainer PJ (2003) The effect of pegvisomant-induced serum IGF-I normalization on serum leptin levels in patients with acromegaly. Clin Endocrinol (Oxf) 59:168–174

    Article  CAS  Google Scholar 

  96. Rose DR, Clemmons DR (2002) Growth hormone receptor antagonist improves insulin resistance in acromegaly. Growth Hormon IGF Res 12:418–424

    Article  CAS  Google Scholar 

  97. Drake WM, Rowles SV, Roberts ME, Fode FK, Besser GM, Monson JP, Trainer PJ (2003) Insulin sensitivity and glucose tolerance improve in patients with acromegaly converted from depot octreotide to pegvisomant. Eur J Endocrinol 149:521–527

    Article  PubMed  CAS  Google Scholar 

  98. Jorgensen JO, Feldt-Rasmussen U, Fgrystyk J, Chen JW, Kristensen LO, Hagen C, Orskov H (2005) Cotreatment of acromegaly with a somatostatin analog and a growth hormone receptor antagonist. J Clin Endocrinol Metab 90:5627–5631

    Article  PubMed  CAS  Google Scholar 

  99. Schreiber I, Buchfelder M, Droste M, Forssmann K, Mann K, Saller B, Strasburger CJ (2007) Treatment of acromegaly with the GH receptor antagonist pegvisomant in clinical practice: safety and efficacy evaluation from the German Pegvisomant Observational Study. Eur J Endocrinol 156:75–82

    Article  PubMed  CAS  Google Scholar 

  100. De Marinis L, Bianchi A, Fusco A, Cimino V, Mormando M, Tilaro L, Mazziotti G, Pontecorvi A, Giustina A (2007) Long-term effects of the combination of pegvisomant with somatostatin analogs (SSA) on glucose homeostasis in non-diabetic patients with active acromegaly partially resistant to SSA. Pituitary 10:227–232

    Article  PubMed  CAS  Google Scholar 

  101. Colao A, Pivonello R, Auriemma RS, De Martino MC, Bidlingmaier M, Briganti F, Tortora F, Burman P, Kourides IA, Strasburger CJ, Lombardi G (2006) Efficacy of 12-month treatment with the GH receptor antagonist pegvisomant in patients with acromegaly resistant to long-term, high-dose somatostatin analog treatment: effect on IGF-I levels, tumor mass, hypertension and glucose tolerance. Eur J Endocrinol 154:467–477

    Article  PubMed  CAS  Google Scholar 

  102. Barkan AL, Burman P, Clemmons DR, Drake WM, Gagel RF, Harris PE, Trainer PJ, van der Lely AJ, Vance ML (2005) Glucose homeostasis and safety in patients with acromegaly converted from long-acting octreotide to pegvisomant. J Clin Endocrinol Metab 90:5684–5691

    Article  PubMed  CAS  Google Scholar 

  103. Lindberg-Larsen R, Moller N, Schmitz O, Nielsen S, Andersen M, Orskov H, Jorgensen JO (2007) The impact of pegvisomant treatment on substrate metabolism and insulin sensitivity in patients with acromegaly. J Clin Endocrinol Metab 92:1724–1728

    Article  PubMed  CAS  Google Scholar 

  104. Higham CE, Rowles S, Russel-Jones D, Umpleby AM, Trainer PJ (2009) Pegvisomant improves insulin sensitivity and reduces overnight free fatty acid concentrations in patients with acromegaly. J Clin Endocrinol Metab 94:2459–2463

    Article  PubMed  CAS  Google Scholar 

  105. Trainer PJ, Ezzat S, D’Souza GA, Layton G, Strasburger CJ (2009) A randomized, controlled, multicentre trial comparing pegvisomant alone with combination therapy of pegvisomant and long-acting octreotide in patients with acromegaly. Clin Endocrinol (Oxf) 71:549–557

    Article  CAS  Google Scholar 

  106. Urbani C, Sardella C, Calevro A, Rossi G, Scattina I, Lombardi M, Lupi I, Manetti L, Martino E, Bogazzi F (2013) Effects of medical therapies for acromegaly on glucose metabolism. Eur J Endocrinol 169:99–108

    Article  PubMed  CAS  Google Scholar 

  107. Madsen M, Poulsen PL, Orskov H, Moller N, Jorgensen JO (2011) Cotreatment with pegvisomant and a somatostatin analog (SA) in SA-responsive acromegalic patients. J Clin Endocrinol Metab 96:2405–2413

    Article  PubMed  CAS  Google Scholar 

  108. Kumar V, Gulatia RK, Ahuja MM (1971) A clinical and biochemical study of 12 cases of acromegaly with special reference to plasma I.R.I. and FFA on glibenclamide administration. J Assoc Phys India 19:623–677

    CAS  Google Scholar 

  109. Watanabe A, Komine F, Nirei K, Tamura K, Nabe K, Aiba N, Kamoshida S, Otsuka M, Okubo H, Kanou M, Sawada S, Uchiyama T, Nakamura S, Arakawa Y (2004) A case of secondary diabetes mellitus with acromegaly improved by pioglitazone. Diabet Med 21:1049–1050

    Article  PubMed  CAS  Google Scholar 

  110. Kim DDW, Goh J, Panossian Z, Gamble G, Holdaway I, Grey A (2012) Pioglitazone in acromegaly: an open-label, prospective study. Clin Endocrinol (Oxf) 77:575–578

    Article  CAS  Google Scholar 

  111. Arnaldi et al (2003) Diagnosis and complications of Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab 88:5593–5602

    Article  PubMed  CAS  Google Scholar 

  112. Arnaldi G et al (2004) Cardiovascular risk in Cushing’s syndrome. Pituitary 7:253–256

    Article  PubMed  Google Scholar 

  113. Mancini T et al (2010) Treatment of Cushing disease: overview and recent findings. Ther Clin Risk Manag 21:505–516

    Google Scholar 

  114. Gola M et al (2005) Growth hormone and cardiovascular risk factors. J Clin Endocrinol Metab 90:1864–1870

    Article  PubMed  CAS  Google Scholar 

  115. Filipsson H et al (2006) The impact of glucocorticoid replacement regimens on metabolic outcome and comorbidity in hypopituitary patients. J Clin Endocrinol Metab 91:3954–3961

    Article  PubMed  CAS  Google Scholar 

  116. Mazziotti G et al (2010) Glucocorticoid replacement therapy and vertebral fractures in hypopituitary adult males with GH deficiency. Eur J Endocrinol 163:15–20

    Article  PubMed  CAS  Google Scholar 

  117. Zeiger MA et al (2009) American Association of Clinical Endocrinologists and American Association of Endocrine Surgeons medical guidelines for the management of adrenal incident alomas: executive summary of recommendations. Endocr. Pract. 15:450–453

    Article  PubMed  Google Scholar 

  118. Terzolo M et al (2007) Subclinical Cushing’s syndrome. Arq Bras Endocrinol Metabol 51:1272–1279

    Article  PubMed  Google Scholar 

  119. Colao A et al (1999) Persistence of increased cardiovascular risk in patients with Cushing’s disease after five years of successful cure. J Clin Endocrinol Metab 84:2664–2672

    PubMed  CAS  Google Scholar 

  120. Webb SM et al (2010) Metabolic, cardiovascular, and cerebrovascular outcomes in growth hormone-deficient subjects with previous Cushing’s disease or non-functioning pituitary adenoma. J Clin Endocrinol Metab 95:630–638

    Article  PubMed  CAS  Google Scholar 

  121. Faggiano A et al (2003) Cardiovascular risk factors and common carotid artery caliber and stiffness in patients with Cushing’s disease during active disease and 1 year after disease remission. J Clin Endocrinol Metab 88:2527–2533

    Article  PubMed  CAS  Google Scholar 

  122. Giordano R, Picu A, Marinazzo E et al (2011) Metabolic and cardiovascular outcomes in patients with Cushing’s syndrome of different aetiologies during active disease and 1 year after remission. Clin Endocrinol (Oxf) 75:354–360

    Article  CAS  Google Scholar 

  123. Colao A, Boscaro M, Ferone D, Casanueva FF (2014) Managing Cushing’s disease: the state of the art. Endocrine 47:9–20

    Article  PubMed  CAS  Google Scholar 

  124. Nieman LK (2013) Update in the medical therapy of Cushing’s disease. Curr Opin Endocrinol Diabetes Obes 20(4):330–334. doi:10.1097/MED.0b013e3283631809

    PubMed  PubMed Central  CAS  Google Scholar 

  125. Gadelha MR, Vieira Neto L (2014) Efficacy of medical treatment in Cushing’s disease: a systematic review. Clin Endocrinol 80(1):1–12. doi:10.1111/cen.12345

    Article  CAS  Google Scholar 

  126. Biller BM et al (2008) Treatment of adrenocorticotropin-dependent Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab 93:2454–2462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Castinetti F et al (2008) Ketoconazole revisited: a preoperative or postoperative treatment in Cushing’s disease. Eur J Endocrinol 158:91–99

    Article  PubMed  CAS  Google Scholar 

  128. Valassi E et al (2012) A reappraisal of the medical therapy with steroidogenesis inhibitors in Cushing’s syndrome. Clin Endocrinol 77:735–742

    Article  CAS  Google Scholar 

  129. Castinetti F, Guignat L, Giraud P, Muller M, Kamenicky P, Drui D, Caron P, Luca F, Donadille B, Vantyghem MC, Bihan H, Delemer B, Raverot G, Motte E, Philippon M, Morange I, Conte-Devolx B, Quinquis L, Martinie M, Vezzosi D, Le Bras M, Baudry C, Christin-Maitre S, Goichot B, Chanson P, Young J, Chabre O, Tabarin A, Bertherat J, Brue T (2014) Ketoconazole in Cushing’s disease: is it worth a try? J Clin Endocrinol Metab 99(5):1623–1630

    Article  PubMed  CAS  Google Scholar 

  130. Verhelst et al (1991) Short and long-term responses to metyrapone in the medical management of 91 patients with Cushing’s syndrome. Clin Endocrinol (Oxf) 35(2):169–178

    Article  CAS  Google Scholar 

  131. Yoshida et al (2012) Assessment of long-term efficacy and safety of metyrapone monotherapy in a patient with ACTH-independent macronodular adrenal hyperplasia. Endocrine 41:160–161

    Article  PubMed  CAS  Google Scholar 

  132. Omori et al (2001) Rational, effective metyrapone treatment of ACTH-independent bilateral macronodular adrenocortical hyperplasia (AIMAH). Endocr J 48(6):665–669

    Article  PubMed  CAS  Google Scholar 

  133. Jeffcoate et al (1977) Metyrapone in long-term management of Cushing’s disease. Br Med J 2(6081):215–217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Castinetti et al (2009) Merits and pitfalls of mifepristone in Cushing’s syndrome. Eur J Endocrinol 160:1003–1010

    Article  PubMed  CAS  Google Scholar 

  135. Nieman LK, Chrousos GP, Kellner C, Spitz IM, Nisula BC, Cutler GB, Merriam GR, Bardin CW, Loriaux DL (1985) Successful treatment of Cushing’s syndrome with the glucocorticoid antagonist RU 486. J Clin Endocrinol Metab 61:536–540

    Article  PubMed  CAS  Google Scholar 

  136. Chu JW, Matthias DF, Belanoff J, Schatzberg A, Hoffman AR, Feldman D (2001) Successful long-term treatment of refractory Cushing’s disease with high-dose mifepristone (RU 486). J Clin Endocrinol Metab 86:3568–3573

    PubMed  CAS  Google Scholar 

  137. Cassier PA, Abou-Amara-Olivieri S, Artru P, Lapalus MG, Riou JP, Lombard-Bohas C (2008) Mifepristone for ectopic ACTH secretion in metastatic endocrine carcinomas: report of two cases. Eur J Endocrinol 158:935–938

    Article  PubMed  CAS  Google Scholar 

  138. Fleseriu et al (2012) Mifepristone, a glucocorticoid receptor antagonist, produces clinical and metabolic benefits in patients with cushing’s syndrome. J Clin Endocrinol Metab 97(6):2039–2049

    Article  PubMed  CAS  Google Scholar 

  139. Pivonello et al (2009) The medical treatment of Cushing’s disease: effectiveness of chronic treatment with the dopamine agonist cabergoline in patients unsuccessfully treated by surgery. J Clin Endocrinol Metab 94(1):223–230

    Article  PubMed  CAS  Google Scholar 

  140. Vilar L, Naves LA, Azevedo MF et al (2010) Effectiveness of cabergoline in monotherapy and combined with ketoconazole in the management of Cushing’s disease. Pituitary 13(2):123–129

    Article  PubMed  CAS  Google Scholar 

  141. Barbot M, Albiger N, Ceccato F et al (2014) Combination therapy for Cushing’s disease: effectiveness of two schedules of treatment. Should we start with cabergoline or ketoconazole? Pituitary 17(2):109–117

    Article  PubMed  CAS  Google Scholar 

  142. Pecori-Giraldi F et al (2006) Effect of protracted treatment with rosiglitazone, a PPARgamma agonist, in patients with Cushing’s disease. Clin Endocrinol 64:219–224

    Article  CAS  Google Scholar 

  143. Ambrosi B et al (2004) Effects of chronic administration of PPARgamma ligand rosiglitazone in Cushing’s disease. Eur J Endocrinol 151:173–178

    Article  PubMed  CAS  Google Scholar 

  144. Suri D, Weiss RE (2005) Effect of pioglitazone on adrenocorticotropic hormone and cortisol secretion in Cushing’s disease. J Clin Endocrinol Metab 90:1340–1346

    Article  PubMed  CAS  Google Scholar 

  145. Pecori Giraldi F, Ambrogio AG, Andrioli M et al (2012) Potential role for retinoic acid in patients with Cushing’s disease. J Clin Endocrinol Metab 97(10):3577–3583

    Article  PubMed  CAS  Google Scholar 

  146. Schonbrunn A (1982) Glucocorticoids down-regulate somatostatin receptors on pituitary cells in culture. Endocrinology 110:1147–1154

    Article  PubMed  CAS  Google Scholar 

  147. Giustina A et al (1991) Low-dose octreotide is able to cause a maximal inhibition of the glycemic responses to a mixed meal in obese type 2 diabetic patients treated with insulin. Diabetes Res Clin Pract 14:47–54

    Article  PubMed  CAS  Google Scholar 

  148. Colao A, Petersenn S, Newell-Price J et al (2012) Asireotide B2305 Study Group. A 12-month phase 3 study of pasireotide in Cushing’s disease. N Engl J Med 366(10):914–924

    Article  PubMed  CAS  Google Scholar 

  149. Boscaro M, Ludlam WH, Atkinson B et al (2009) Treatment of pituitary-dependent Cushing’s disease with the multireceptor ligand somatostatin analog pasireotide (SOM230): a multicenter, phase II trial. J Clin Endocrinol Metab 94(1):115–122

    Article  PubMed  CAS  Google Scholar 

  150. Ben-Shlomo A et al (2009) Differential ligand-mediated pituitary somatostatin receptor subtype signaling: implications for corticotroph tumor therapy. J Clin Endocrinol Metab 94:4342–4350

    Article  PubMed  CAS  Google Scholar 

  151. Pedroncelli AM (2010) Medical treatment of Cushing’s disease: somatostatin analogues and pasireotide. Neuroendocrinology 92:120–124

    Article  PubMed  CAS  Google Scholar 

  152. Occhi G, Regazzo D, Albiger NM et al (2014) Activation of the dopamine receptor type-2 (DRD2) promoter by 9-cis retinoic acid in a cellular model of Cushing’s disease mediates the inhibition of cell proliferation and ACTH secretion without a complete corticotroph-to-melanotroph transdifferentiation. Endocrinology 155:3538–3549

  153. Mitra SW et al (1999) Colocalization of somatostatin receptor sst5 and insulin in rat pancreatic beta-cells. Endocrinology 140:3790–3796

    PubMed  CAS  Google Scholar 

  154. Petersenn S et al (2011) Pasireotide (SOM230), a novel multi-receptor targeted somatostatin analogue, is well tolerated when administered as a continuous 7 day subcutaneous infusion in healthy male volunteers. J Clin Pharmacol 52:1017–1027

    Article  PubMed  CAS  Google Scholar 

  155. Doga M et al (2006) Growth hormone deficiency in the adult. Pituitary 9:305–311

    Article  PubMed  CAS  Google Scholar 

  156. Giustina A et al (2008) Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev 29:535–559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Henry et al (2013) Hyperglycemia associated with pasireotide: results from a mechanistic study in healthy volunteers. J Clin Endocrinol Metab 98(8):3446–3453

    Article  PubMed  CAS  Google Scholar 

  158. Mackenzie Feder J, Bourdeau I, Vallette S, Beauregard H, Ste-Marie LG, Lacroix A (2013) Pasireotide monotherapy in Cushing’s disease: a single-centre experience with 5-year extension of phase III Trial. Pituitary 17:519–529

    Article  CAS  Google Scholar 

  159. Trementino L, Cardinaletti M, Concettoni C, Marcelli G, Boscaro M, Arnaldi G (2014) Up-to 5-year efficacy of pasireotide in a patient with Cushing’s disease and pre-existing diabetes: literature review and clinical practice considerations. Pituitary 18:359–365

    Article  Google Scholar 

  160. Feelders RA et al (2010) Pasireotide alone or with cabergoline and ketoconazole in Cushing’s disease. N Engl J Med 362:1846–1848

    Article  PubMed  CAS  Google Scholar 

  161. Boscaro et al (2014) Extended treatment of Cushing’s disease with pasireotide: results from a 2-year, Phase II study. Pituitary 17:320–326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Taghavi SM, Fatemi SS, Rokni H (2012) Cabergoline effect on blood sugar in type 2 diabetic patients with oral agent failure. Med J Malaysia 67(4):390–392

    PubMed  Google Scholar 

  163. Gibson CD, Karmally W, McMahon DJ, Wardlaw SL, Korner J (2012) Randomized pilot study of cabergoline, a dopamine receptor agonist: effects on body weight and glucose tolerance in obese adults. Diabetes Obes Metab 14(4):335–340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Gurwitz JH et al (1994) Glucocorticoids and the risk for initiation of hypoglycemic therapy. Arch Intern Med 154:97–101

    Article  PubMed  CAS  Google Scholar 

  165. Henriksen JE, Alford F, Ward GM, Beck-Nielsen H (1997) Risk and mechanism of dexamethasone-induced deterioration of glucose tolerance in non-diabetic first-degree relatives of NIDDM patients. Diabetologia 40:1439–1448

    Article  PubMed  CAS  Google Scholar 

  166. Darmon P et al (2006) Insulin resistance induced by hydrocortisone is increased in patients with abdominal obesity. Am J Physiol 291:E995–E1002

    Article  CAS  Google Scholar 

  167. Donihi AC et al (2006) Prevalence and predictors of corticosteroid related hyperglycemia in hospitalized patients. Endocr Pract 12:358–362

    Article  PubMed  Google Scholar 

  168. Perez A, Jansen-Chaparro S, Saigi I, Bernal-Lopez MR, Miñambres I, Gomez-Huelgas R (2014) Glucocorticoid-induced hyperglycemia. J. Diabetes 6(1):9–20

    Article  CAS  Google Scholar 

  169. Mancini T et al (2009) Vertebral fractures in males with type 2 diabetes treated with rosiglitazone. Bone 45:784–788

    Article  PubMed  CAS  Google Scholar 

  170. Mazziotti G et al (2010) Drug-induced osteoporosis: mechanisms and clinical implications. Am J Med 123:877–884

    Article  PubMed  CAS  Google Scholar 

  171. Home PD et al (2007) Rosiglitazone evaluated for cardiovascular outcomes: an interim analysis. N Engl J Med 357:28–38

    Article  PubMed  CAS  Google Scholar 

  172. Van Raalte DH et al (2011) Glucagon-like peptide-1 receptor agonist treatment prevents glucocorticoid-induced glucose intolerance and islet-cell dysfunction in humans. Diabetes Care 34:412–417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Matsuo et al (2013) Evaluation of the effects of exenatide administration in patients with type 2 diabetes with worsened glycemic control caused by glucocorticoid therapy. Intern Med 52:89–95

    Article  PubMed  CAS  Google Scholar 

  174. Dhital SM, Shenkery Y, Meredith M et al (2012) A retrospective study comparing neutral protamine hagedorm insulin with glargine as basal therapy in prednisone associated diabetes mellitus in hospitalized patients. Endocr Pract 18:712–719

    Article  PubMed  PubMed Central  Google Scholar 

  175. Lansang MC, Hustak LK (2011) Glucocorticoid-induced diabetes and adrenal suppression: how to detect and manage them. Cleve Clin J Med 78(11):748–756

    Article  PubMed  Google Scholar 

  176. Newell-Price (2010) Management of diabetes mellitus in Cushing’s syndrome. Neuroendocrinology 92(Suppl 1):82–85

    PubMed  Google Scholar 

  177. Ritzel RA, Kleine N, Holst JJ, Willms B, Schmiegel W, Nauck MA (2007) Preserved GLP-1 effects in a diabetic patient with Cushing’s disease. Exp Clin Endocrinol Diabetes 115:146–150

    Article  PubMed  CAS  Google Scholar 

  178. Colao A, De Block C, Gaztambide MS, Kumar S, Seufert J, Casanueva FF (2014) Managing hyperglycemia in patients with Cushing’s disease treated with pasireotide: medical expert recommendations. Pituitary 17(2):180–186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Reznik Y, Bertherat J, Borson-Chazot F, Brue T, Chanson P, Cortet-Rudelli C, Delemer B, Tabarin A, Bisot-Locard S, Vergès B (2013) Management of hyperglycaemia in Cushing’s disease: experts’ proposals on the use of pasireotide. Diabetes Metab 39(1):34–41

    Article  PubMed  CAS  Google Scholar 

  180. Inzucchi SE, Bergenstal RM, Buse JB, American Diabetes Association (ADA); European Association for the Study of Diabetes (EASD) (2012) Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 35(6):1364–1379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank D.r Laura Bertoccini for help and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Avogaro.

Ethics declarations

Conflict of interest

AA has received research Grant from Strategic Project DYCENDI from the University of Padova (STPD11ALFE) MGB has received research Grant from Ateneo Sapienza 2014. AA has received a speaker honorarium from Novartis, Lilly, Novo, Sanofi, Boehringher, Astrazeneca, Mediolanum, Servier, Janssen, Merck Sharp & Dohme. MGB has received a speaker honorarium from Lilly, Novo, Sanofi, Boehringher, Astrazeneca, Servier, Janssen, Merck Sharp & Dohme. FG as received a speaker honorarium from Novartis, Lilly, Novo, Sanofi, Boehringher, Astrazeneca, Janssen, Merck Sharp & Dohme. CS has received a speaker honorarium from Otsuka, Novartis, Lilly. AA has received financial support for attending symposia from Novartis, Lilly, Novo, Sanofi, Boehringher, Astrazeneca; MGB has received financial support for attending symposia from Sanofi, Novo, Lilly; FG has received financial support for attending symposia from Sanofi, Merck Sharp & Dohme. Scientific board members: AA: Novartis, Lilly, Novo, Sanofi, Boehringher, Astrazeneca, Mediolanum, Servier, Janssen, Merck Sharp & Dohme; FG: Novartis, Lilly, Novo, Sanofi, Boehringher-Ingelheim, Astrazeneca, Janssen, Merck Sharp & Dohme, Roche, Lifescan; MGB: Sanofi; CS Novartis, Viropharma. VP declares non conflict of interest.

Ethical approval

These guidelines contain studies performed by the authors in human subjects. For all these studies, we declare that all procedures performed in studies involving human participants were in accordance to the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

For all the studies from the authors of these guidelines cited in the text we declare that informed consent was obtained from individual participants included in the studies.

Additional information

On behalf of the Italian Society for the Study of Diabetes (SID) and the Italian Endocrinological Society (SIE).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baroni, M.G., Giorgino, F., Pezzino, V. et al. Italian Society for the Study of Diabetes (SID)/Italian Endocrinological Society (SIE) guidelines on the treatment of hyperglycemia in Cushing’s syndrome and acromegaly. J Endocrinol Invest 39, 235–255 (2016). https://doi.org/10.1007/s40618-015-0404-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-015-0404-6

Keywords

Navigation