Skip to main content

Advertisement

Log in

Managing Cushing’s disease: the state of the art

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Cushing’s disease is a rare chronic disease caused by a pituitary adenoma, which leads to excess secretion of adrenocorticotropic hormone (ACTH). The over-production of ACTH leads to hyperstimulation of the adrenal glands and a chronic excess of cortisol, resulting in the signs and symptoms of a severe clinical state (Cushing’s syndrome) that leads to significant morbidity, negative impacts on the patient’s quality of life, and, if untreated, increased mortality. The management of patients with Cushing’s disease is complicated by the heterogeneity of the condition, with signs and symptoms that overlap with those of other diseases, and high subclinical incidence rates. Controversies surrounding the tests used for screening and identifying patients with Cushing’s disease add to the challenge of patient management. Surgical intervention to remove the adenoma is the first-line treatment for patients with Cushing’s disease, but medical therapies are useful in patients who relapse or are unsuitable for surgery. The recent introduction of pasireotide, the first pituitary-directed medical therapy, expands the number of treatment options available for patients with Cushing’s disease. This state-of-the-art review aims to provide an overview of the most recent scientific research and clinical information regarding Cushing’s disease. Continuing research into improving the diagnosis and treatment of Cushing’s disease will help to optimize patient management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S.S. Praw, A.P. Heaney, Medical treatment of Cushing’s disease: overview and recent findings. Int. J. Gen. Med. 29, 209–217 (2009)

    Google Scholar 

  2. J. Newell-Price, X. Bertagna, A.B. Grossman et al., Cushing’s syndrome. Lancet 367, 1605–1617 (2006)

    CAS  PubMed  Google Scholar 

  3. J. Lindholm, S. Juul, J.O. Jørgensen et al., Incidence and late prognosis of Cushing’s syndrome: a population-based study. J. Clin. Endocrinol. Metab. 86, 117–123 (2001)

    CAS  PubMed  Google Scholar 

  4. J. Etxabe, J.A. Vazquez, Morbidity and mortality in Cushing’s disease: an epidemiological approach. Clin. Endocrinol. (Oxf) 40, 479–484 (1994)

    CAS  Google Scholar 

  5. R. Pivonello, M.C. De Martino, M. De Leo et al., Cushing’s syndrome. Endocrinol. Metab. Clin. North Am. 37, 135–149 (2008)

    CAS  PubMed  Google Scholar 

  6. M. Boscaro, G. Arnaldi, Approach to the patient with possible Cushing’s syndrome. J. Clin. Endocrinol. Metab. 94, 3121–3131 (2009)

    CAS  PubMed  Google Scholar 

  7. C. Steffensen, A.M. Bak, K.Z. Rubeck et al., Epidemiology of Cushing’s syndrome. Neuroendocrinology 92, 1–5 (2010)

    CAS  PubMed  Google Scholar 

  8. L. Guignat, J. Bertherat, The diagnosis of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline: commentary from a European perspective. Eur. J. Endocrinol. 163, 9–13 (2010)

    CAS  PubMed  Google Scholar 

  9. J. Kreutzer, R. Fahlbusch, Diagnosis and treatment of pituitary tumors. Curr. Opin. Neurol. 17, 693–703 (2004)

    PubMed  Google Scholar 

  10. A.S. Kanter, A.O. Diallo, J.A. Jane Jr et al., Single-center experience with pediatric Cushing’s disease. J. Neurosurg. 103, 413–420 (2005)

    PubMed  Google Scholar 

  11. D.F. Kelly, Transsphenoidal surgery for Cushing’s disease: a review of success rates, remission predictors, management of failed surgery, and Nelson’s Syndrome. Neurosurg. Focus 23, E5 (2007)

    PubMed  Google Scholar 

  12. J. Newell-Price, A.B. Grossman, Differential diagnosis of Cushing’s syndrome. Arq. Bras. Endocrinol. Metabol. 51, 1199–1206 (2007)

    PubMed  Google Scholar 

  13. B.M. Biller, A.B. Grossman, P.M. Stewart et al., Treatment of adrenocorticotropin-dependent Cushing’s syndrome: a consensus statement. J. Clin. Endocrinol. Metab. 93, 2454–2462 (2008)

    CAS  PubMed Central  PubMed  Google Scholar 

  14. D.M. Prevedello, N. Pouratian, J. Sherman et al., Management of Cushing’s disease: outcome in patients with microadenoma detected on pituitary magnetic resonance imaging. J. Neurosurg. 109, 751–759 (2008)

    PubMed  Google Scholar 

  15. G. Arnaldi, M. Boscaro, New treatment guidelines on Cushing’s disease. F1000 Med. Rep. 1, 64 (2009)

    Google Scholar 

  16. L.S. Blevins Jr, N. Sanai, S. Kunwar et al., An approach to the management of patients with residual Cushing’s disease. J. Neurooncol. 94, 313–319 (2009)

    CAS  PubMed Central  PubMed  Google Scholar 

  17. B.M. Biller, A. Colao, S. Petersenn et al., Prolactinomas, Cushing’s disease and acromegaly: debating the role of medical therapy for secretory pituitary adenomas. BMC Endocr. Disord. 10, 10 (2010)

    PubMed Central  PubMed  Google Scholar 

  18. N. Sonino, F. Fallo, G.A. Fava, Psychosomatic aspects of Cushing’s syndrome. Rev. Endocr. Metab. Disord. 11, 95–104 (2010)

    PubMed  Google Scholar 

  19. A. Rizk, J. Honegger, M. Milian et al., Treatment options in Cushing’s disease. Clin. Med. Insights. Oncol. 6, 75–84 (2012)

    CAS  PubMed Central  PubMed  Google Scholar 

  20. F. Castinetti, M. Nagai, H. Dufour et al., Gamma knife radiosurgery is a successful adjunctive treatment in Cushing’s disease. Eur. J. Endocrinol. 156, 91–98 (2007)

    CAS  PubMed  Google Scholar 

  21. J.K. Devin, G.S. Allen, A.J. Cmelak et al., The efficacy of linear accelerator radiosurgery in the management of patients with Cushing’s disease. Stereotact. Funct. Neurosurg. 82, 254–262 (2004)

    PubMed  Google Scholar 

  22. M. Boschetti, M. De Lucchi, M. Giusti et al., Partial visual recovery from radiation-induced optic neuropathy after hyperbaric oxygen therapy in a patient with Cushing disease. Eur. J. Endocrinol. 154, 813–818 (2006)

    CAS  PubMed  Google Scholar 

  23. C.N. Dang, P. Trainer, Pharmacological management of Cushing’s syndrome: an update. Arq. Bras. Endocrinol. Metabol. 51, 1339–1348 (2007)

    PubMed  Google Scholar 

  24. A. Colao, S. Petersenn, J. Newell-Price et al., A 12-month phase 3 study of pasireotide in Cushing’s disease. N. Engl. J. Med. 366, 914–924 (2012)

    CAS  PubMed  Google Scholar 

  25. J. Bertherat, W. Ludlam, R. Pivonello et al., Long-term use of pasireotide in Cushing’s disease: 24-month safety results from a randomized Phase III study. Endocr. Abstr. 27, P1405 (2012)

    Google Scholar 

  26. M. Yaneva, S. Vandeva, S. Zacharieva et al., Genetics of Cushing’s syndrome. Neuroendocrinology 92, 6–10 (2010)

    CAS  PubMed  Google Scholar 

  27. Genetics Home Reference. http://ghr.nlm.nih.gov/ (2013). Accessed 5 July 2013

  28. A. Lacroix, ACTH-independent macronodular adrenal hiperplasia. Best practice and research. Clin. Endocrinol. Metab. 23, 245–259 (2009)

    CAS  Google Scholar 

  29. S.M. Webb, X. Badia, M.J. Barahona et al., Evaluation of health-related quality of life in patients with Cushing’s syndrome with a new questionnaire. Eur. J. Endocrinol. 158, 623–630 (2008)

    CAS  PubMed  Google Scholar 

  30. A. Santos, E. Resmini, M.A. Martínez et al., Quality of life in patients with pituitary tumors. Curr. Opin. Endocrinol. Diabetes Obes. 16, 299–303 (2009)

    PubMed  Google Scholar 

  31. A. Colao, A. Cozzolino, R. Pivonello, Quality of life in patients with Cushing’s disease: a modern approach. Clin. Endocrinol. 76, 776–777 (2012)

    Google Scholar 

  32. L.K. Nieman, B.M. Biller, J.W. Findling et al., The diagnosis of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 93, 1526–1540 (2008)

    CAS  PubMed Central  PubMed  Google Scholar 

  33. L. Katznelson, J.S. Bogan, J.R. Trob et al., Biochemical assessment of Cushing’s disease in patients with corticotroph macroadenomas. J. Clin. Endocrinol. Metab. 83, 1619–1623 (1998)

    CAS  PubMed  Google Scholar 

  34. R.C. Bakker, P.R. Gallas, J.A. Romijn et al., Cushing’s syndrome complicated by multiple opportunistic infections. J. Endocrinol. Invest. 21, 329–333 (1998)

    CAS  PubMed  Google Scholar 

  35. A. Faggiano, R. Pivonello, D. Melis et al., Nephrolithiasis in Cushing’s disease: prevalence, etiopathogenesis, and modification after disease cure. J. Clin. Endocrinol. Metab. 88, 2076–2080 (2003)

    CAS  PubMed  Google Scholar 

  36. L. Tauchmanovà, R. Pivonello, M.C. De Martino et al., Effects of sex steroids on bone in women with subclinical or overt endogenous hypercortisolism. Eur. J. Endocrinol. 157, 359–366 (2007)

    PubMed  Google Scholar 

  37. S.G. Kosseifi, D.N. Nassour, M.A. Shaikh et al., Nodular pulmonary histoplasmosis in Cushing’s disease: a case report and literature review. Tenn. Med. 100, 44–46 (2007)

    PubMed  Google Scholar 

  38. A.W. van der Eerden, M. den Heijer, W.J. Oyen et al., Cushing’s syndrome and bone mineral density: lowest Z scores in young patients. Neth. J. Med. 65, 137–141 (2007)

    PubMed  Google Scholar 

  39. G. Kaltsas, P. Makras, Skeletal diseases in Cushing’s syndrome: osteoporosis versus arthropathy. Neuroendocrinology 92, 60–64 (2010)

    CAS  PubMed  Google Scholar 

  40. R.A. Feelders, S.J. Pulgar, A. Kempel, A.M. Pereira, The burden of Cushing’s disease: clinical and health-related quality of life aspects. Eur. J. Endocrinol. 167, 311–2620 (2012)

    CAS  PubMed  Google Scholar 

  41. M.D. Bronstein, L.R. Salgado, N.R. de Castro Musolino, Medical management of pituitary adenomas: the special case of management of the pregnant woman. Pituitary 5, 99–107 (2002)

    CAS  PubMed  Google Scholar 

  42. L. Tauchmanovà, R. Rossi, B. Biondi et al., Patients with subclinical Cushing’s syndrome due to adrenal adenoma have increased cardiovascular risk. J. Clin. Endocrinol. Metab. 87, 4872–4878 (2002)

    PubMed  Google Scholar 

  43. R. Pivonello, A. Faggiano, G. Lombardi et al., The metabolic syndrome and cardiovascular risk in Cushing’s syndrome. Endocrinol. Metab. Clin. North Am. 34, 327–339 (2005)

    CAS  PubMed  Google Scholar 

  44. M. De Leo, R. Pivonello, R.S. Auriemma et al., Cardiovascular disease in Cushing’s syndrome: heart versus vasculature. Neuroendocrinology 92, 50–54 (2010)

    PubMed  Google Scholar 

  45. F. Fallo, G. Famoso, D. Capizzi et al., Coronary microvascular function in patients with Cushing’s syndrome. Endocrine 43, 206–213 (2013)

    CAS  PubMed  Google Scholar 

  46. S. Savastano, R. Pivonello, A. Colao, Bariatric surgery for obesity and hidden Cushing syndrome. Surg. Obes. Relat. Dis. 5, 121–122 (2009)

    PubMed  Google Scholar 

  47. P. Chanson, S. Salenave, Metabolic syndrome in Cushing’s syndrome. Neuroendocrinology 92, 96–101 (2010)

    CAS  PubMed  Google Scholar 

  48. E.B. Geer, W. Shen, D. Gallagher et al., MRI assessment of lean and adipose tissue distribution in female patients with Cushing’s disease. Clin. Endocrinol. 73, 469–475 (2010)

    Google Scholar 

  49. O.M. Dekkers, E. Horváth-Puhó, J.O. Jørgensen et al., Multisystem morbidity and mortality in Cushing’s syndrome: a cohort study. J. Clin. Endocrinol. Metab. 98, 2277–2284 (2013)

    CAS  PubMed  Google Scholar 

  50. G. Arnaldi, A. Angeli, A.B. Atkinson et al., Diagnosis and complications of Cushing’s syndrome: a consensus statement. J. Clin. Endocrinol. Metab. 88, 5593–5602 (2003)

    CAS  PubMed  Google Scholar 

  51. D. Graversen, P. Vestergaard, K. Stochholm et al., Mortality in Cushing’s syndrome: a systematic review and meta-analysis. Eur. J. Intern. Med. 23, 278–282 (2012)

    CAS  PubMed  Google Scholar 

  52. R.N. Clayton, D. Raskauskiene, R.C. Reulen et al., Mortality and morbidity in Cushing’s disease over 50 years in Stoke-on-Trent, UK: audit and meta-analysis of literature. J. Clin. Endocrinol. Metab. 96, 632–642 (2011)

    CAS  PubMed  Google Scholar 

  53. O.M. Dekkers, N.R. Biermasz, A.M. Pereira et al., Mortality in patients treated for Cushing’s disease is increased, compared with patients treated for nonfunctioning pituitary macroadenoma. J. Clin. Endocrinol. Metab. 92, 976–981 (2007)

    CAS  PubMed  Google Scholar 

  54. E. Valassi, I. Crespo, A. Santos, S.M. Webb, Clinical consequences of Cushing’s syndrome. Pituitary 15, 319–329 (2012)

    PubMed  Google Scholar 

  55. R. Pivonello, M.C. De Martino, M. De Leo et al., Cushing’s syndrome: aftermath of the cure. Arq. Bras. Endocrinol. Metabol. 51, 1381–1391 (2007)

    PubMed  Google Scholar 

  56. A. Faggiano, R. Pivonello, S. Spiezia et al., Cardiovascular risk factors and common carotid artery caliber and stiffness in patients with Cushing’s disease during active disease and 1 year after disease remission. J. Clin. Endocrinol. Metab. 88, 2527–2533 (2003)

    CAS  PubMed  Google Scholar 

  57. A. Colao, R. Pivonello, S. Spiezia et al., Persistence of increased cardiovascular risk in patients with Cushing’s disease after five years of successful cure. J. Clin. Endocrinol. Metab. 84, 2664–2672 (1999)

    CAS  PubMed  Google Scholar 

  58. C. Di Somma, R. Pivonello, S. Loche et al., Effect of 2 years of cortisol normalization on the impaired bone mass and turnover in adolescent and adult patients with Cushing’s disease: a prospective study. Clin Endocrinol (Oxf). 58, 302–308 (2003)

    PubMed  Google Scholar 

  59. A. Faggiano, R. Pivonello, M. Filippella et al., Spine abnormalities and damage in patients cured from Cushing’s disease. Pituitary 4, 153–161 (2001)

    CAS  PubMed  Google Scholar 

  60. O. Ragnarsson, G. Johannsson, Management of endocrine disease: Cushing’s syndrome: a structured short- and long-term management plan for patients in remission. Eur. J. Endocrinol. 169, R139–R152 (2013)

    CAS  PubMed  Google Scholar 

  61. C. Garcia, B.M. Biller, A. Klibanski, The role of the clinical laboratory in the diagnosis of Cushing syndrome. Am. J. Clin. Pathol. 120, S38–S45 (2003)

    PubMed  Google Scholar 

  62. J. Newell-Price, P. Trainer, M. Besser et al., The diagnosis and differential diagnosis of Cushing’s syndrome and pseudo-Cushing’s states. Endocr. Rev. 19, 647–672 (1998)

    CAS  PubMed  Google Scholar 

  63. L.F. Chan, H.L. Storr, A.B. Grossman et al., Pediatric Cushing’s syndrome: clinical features, diagnosis, and treatment. Arq. Bras. Endocrinol. Metabol. 51, 1261–1271 (2007)

    PubMed  Google Scholar 

  64. F. Lumachi, P. Marchesi, D. Miotto et al., CT and MR imaging of the adrenal glands in cortisol-secreting tumors. Anticancer Res. 31, 2923–2926 (2011)

    PubMed  Google Scholar 

  65. D.C. Aron, Cushing’s syndrome: why is diagnosis so difficult? Rev. Endocr. Metab. Disord. 11, 105–116 (2010)

    PubMed  Google Scholar 

  66. S. Hasinski, Assessment of adrenal glucocorticoid function. Which tests are appropriate for screening? Postgrad. Med. 104(61–64), 69–72 (1998)

    Google Scholar 

  67. D. Vassiliadi, S. Tsagarakis, Unusual causes of Cushing’s syndrome. Arq. Bras. Endocrinol. Metabol. 51, 1245–1252 (2007)

    PubMed  Google Scholar 

  68. T.B. Carroll, J.W. Findling, Cushing’s syndrome of nonpituitary causes. Curr. Opin. Endocrinol. Diabetes Obes. 16, 308–315 (2009)

    PubMed  Google Scholar 

  69. M.M. Foisy, E.M. Yakiwchuk, I. Chiu et al., Adrenal suppression and Cushing’s syndrome secondary to an interaction between ritonavir and fluticasone: a review of the literature. HIV Med. 9, 389–396 (2008)

    CAS  PubMed  Google Scholar 

  70. J. Lo, S.K. Grinspoon, Adrenal function in HIV infection. Curr. Opin. Endocrinol. Diabetes Obes. 17, 205–209 (2010)

    CAS  PubMed  Google Scholar 

  71. C. Bernecker, T.B. West, G. Mansmann et al., Hypercortisolism caused by ritonavir associated inhibition of CYP 3A4 under inhalative glucocorticoid therapy. 2 case reports and a review of the literature. Exp. Clin. Endocrinol. Diabetes 120, 125–127 (2012)

    CAS  PubMed  Google Scholar 

  72. C. Levin, H.I. Maibach, Topical corticosteroid-induced adrenocortical insufficiency: clinical implications. Am. J. Clin. Dermatol. 3, 141–147 (2002)

    PubMed  Google Scholar 

  73. B. Coureau, J.F. Bussières, S. Tremblay, Cushing’s syndrome induced by misuse of moderate- to high-potency topical corticosteroids. Ann. Pharmacother. 42, 1903–1907 (2008)

    CAS  PubMed  Google Scholar 

  74. T. Tempark, V. Phatarakijnirund, S. Chatproedprai et al., Exogenous Cushing’s syndrome due to topical corticosteroid application: case report and review literature. Endocrine 38, 328–334 (2010)

    CAS  PubMed  Google Scholar 

  75. E. Castela, E. Archier, S. Devaux et al., Topical corticosteroids in plaque psoriasis: a systematic review of risk of adrenal axis suppression and skin atrophy. J. Eur. Acad. Dermatol. Venereol. 26, 47–51 (2012)

    CAS  PubMed  Google Scholar 

  76. L. Vilar, Mda C. Freitas, M. Faria et al., Pitfalls in the diagnosis of Cushing’s syndrome. Arq. Bras. Endocrinol. Metabol. 51, 1207–1216 (2007)

  77. F. Pecori Giraldi, Recent challenges in the diagnosis of Cushing’s syndrome. Horm. Res. 71, 123–127 (2009)

    Google Scholar 

  78. D.G. Morris, A.B. Grossman, Dynamic tests in the diagnosis and differential diagnosis of Cushing’s syndrome. J. Endocrinol. Invest. 26, 64–73 (2003)

    CAS  PubMed  Google Scholar 

  79. M.B. Elamin, M.H. Murad, R. Mullan et al., Accuracy of diagnostic tests for Cushing’s syndrome: a systematic review and metaanalyses. J. Clin. Endocrinol. Metab. 93, 1553–1562 (2008)

    CAS  PubMed  Google Scholar 

  80. H. Raff, Update on late-night salivary cortisol for the diagnosis of Cushing’s syndrome: methodological considerations. Endocrine. Epub ahead of print (2013)

  81. A. Viardot, P. Huber, J.J. Puder et al., Reproducibility of nighttime salivary cortisol and its use in the diagnosis of hypercortisolism compared with urinary free cortisol and overnight dexamethasone suppression test. J. Clin. Endocrinol. Metab. 90, 5730–5736 (2005)

    CAS  PubMed  Google Scholar 

  82. S.A. Doi, J. Clark, A.W. Russell, Concordance of the late night salivary cortisol in patients with Cushing’s syndrome and elevated urine-free cortisol. Endocrine 43, 327–333 (2013)

    CAS  PubMed  Google Scholar 

  83. C.A. Carrasco, M. García, M. Goycoolea et al., Reproducibility and performance of one or two samples of salivary cortisol in the diagnosis of Cushing’s syndrome using an automated immunoassay system. Endocrine 41, 487–493 (2012)

    CAS  PubMed  Google Scholar 

  84. T. Psaras, M. Milian, V. Hattermann et al., Demographic factors and the presence of comorbidities do not promote early detection of Cushing’s disease and acromegaly. Exp. Clin. Endocrinol. Diabetes 119, 21–25 (2011)

    CAS  PubMed  Google Scholar 

  85. A. Meyer, M. Behrend, Cushing’s syndrome: adrenalectomy and long-term results. Dig. Surg. 21, 363–370 (2004)

    PubMed  Google Scholar 

  86. L. Manenschijn, J.W. Koper, E.L. van den Akker et al., A novel tool in the diagnosis and follow-up of (cyclic) Cushing’s syndrome: measurement of long-term cortisol in scalp hair. J. Clin. Endocrinol. Metab. 97, E1836–E1843 (2012)

    CAS  PubMed  Google Scholar 

  87. P. Leach, A.H. Abou-Zeid, T. Kearney et al., Endoscopic transsphenoidal pituitary surgery: evidence of an operative learning curve. Neurosurgery. 67, 1205–1212 (2010)

    PubMed  Google Scholar 

  88. X. Bertagna, L. Guignat, Approach to the Cushing’s disease patient with persistent/recurrent hypercortisolism after pituitary surgery. J. Clin. Endocrinol. Metab. 98, 1307–1318 (2013)

    CAS  PubMed  Google Scholar 

  89. D.A. Rees, F.W. Hanna, J.S. Davies et al., Long-term follow-up results of transsphenoidal surgery for Cushing’s disease in a single centre using strict criteria for remission. Clin. Endocrinol. (Oxf) 56, 541–551 (2002)

    CAS  Google Scholar 

  90. I. Shimon, Z. Ram, Z.R. Cohen et al., Transsphenoidal surgery for Cushing’s disease: endocrinological follow-up monitoring of 82 patients. Neurosurgery. 51, 57–61 (2002)

    PubMed  Google Scholar 

  91. G.D. Hammer, J.B. Tyrrell, K.R. Lamborn et al., Transsphenoidal microsurgery for Cushing’s disease: initial outcome and long-term results. J. Clin. Endocrinol. Metab. 89, 6348–6357 (2004)

    CAS  PubMed  Google Scholar 

  92. A.B. Atkinson, A. Kennedy, M.I. Wiggam et al., Long-term remission rates after pituitary surgery for Cushing’s disease: the need for long-term surveillance. Clin. Endocrinol. (Oxf) 63, 549–559 (2005)

    Google Scholar 

  93. G. Rollin, N.P. Ferreira, M.A. Czepielewski, Prospective evaluation of transsphenoidal pituitary surgery in 108 patients with Cushing’s disease. Arq. Bras. Endocrinol. Metabol. 51, 1355–1361 (2007)

    PubMed  Google Scholar 

  94. B.M. Hofmann, M. Hlavac, R. Martinez et al., Long-term results after microsurgery for Cushing disease: experience with 426 primary operations over 35 years. J. Neurosurg. 108, 9–18 (2008)

    PubMed  Google Scholar 

  95. A.S. Mahmoud-Ahmed, J.H. Suh, Radiation therapy for Cushing’s disease: a review. Pituitary. 5, 175–180 (2002)

    CAS  PubMed  Google Scholar 

  96. R.B. Friedman, E.H. Oldfield, L.K. Nieman et al., Repeat transsphenoidal surgery for Cushing’s disease. J. Neurosurg. 71, 520–527 (1989)

    CAS  PubMed  Google Scholar 

  97. R.J. Benveniste, W.A. King, J. Walsh et al., Repeated transsphenoidal surgery to treat recurrent or residual pituitary adenoma. J. Neurosurg. 102, 1004–1012 (2005)

    PubMed  Google Scholar 

  98. L.S. Blevins Jr, J.H. Christy, M. Khajavi et al., Outcomes of therapy for Cushing’s disease due to adrenocorticotropin-secreting pituitary macroadenomas. J. Clin. Endocrinol. Metab. 83, 63–67 (1998)

    CAS  PubMed  Google Scholar 

  99. N. Sonino, M. Zielezny, G.A. Fava et al., Risk factors and long-term outcome in pituitary-dependent Cushing’s disease. J. Clin. Endocrinol. Metab. 81, 2647–2652 (1996)

    CAS  PubMed  Google Scholar 

  100. G. Assié, H. Bahurel, J. Coste et al., Corticotroph tumor progression after adrenalectomy in Cushing’s Disease: a reappraisal of Nelson’s Syndrome. J. Clin. Endocrinol. Metab. 92, 172–179 (2007)

    PubMed  Google Scholar 

  101. M. Boscaro, L. Barzon, F. Fallo et al., Cushing’s syndrome. Lancet 357, 783–791 (2001)

    CAS  PubMed  Google Scholar 

  102. R.A. Feelders, L.J. Hofland, Medical treatment of Cushing’s disease. J. Clin. Endocrinol. Metab. 98, 425–438 (2013)

    CAS  PubMed  Google Scholar 

  103. Pasireotide Summary of Product Characteristics: http://www.medicines.org.uk/emc/medicine/26746/SPC#INDICATIONS (2013). Accessed in 5 July 2013

  104. H.A. Schmid, Pasireotide (SOM230): development, mechanism of action and potential applications. Mol. Cell. Endocrinol. 286, 69–74 (2008)

    CAS  PubMed  Google Scholar 

  105. N.K. Djedovic, S.J. Rainbow, Detection of synthetic glucocorticoids by liquid chromatography–tandem mass spectrometry in patients being investigated for Cushing’s syndrome. Ann. Clin. Biochem. 48, 542–549 (2011)

    CAS  PubMed  Google Scholar 

  106. A.E. Kulle, M. Welzel, P.M. Holterhus, F.G. Riepe, Principles and clinical applications of liquid chromatography–tandem mass spectrometry for the determination of adrenal and gonadal steroid hormones. J. Endocrinol. Invest. 34, 702–708 (2011)

    CAS  PubMed  Google Scholar 

  107. B.M. Fong, S. Tam, K.S. Leung, Improved liquid chromatography-tandem mass spectrometry method in clinical utility for the diagnosis of Cushing’s syndrome. Anal. Bioanal. Chem. 396, 783–790 (2010)

    CAS  PubMed  Google Scholar 

  108. T. Deutschbein, M. Broecker-Preuss, J. Flitsch et al., Salivary cortisol as a diagnostic tool for Cushing’s syndrome and adrenal insufficiency: improved screening by an automatic immunoassay. Eur. J. Endocrinol. 166, 613–618 (2012)

    CAS  PubMed  Google Scholar 

  109. H. Raff, Cushing’s syndrome: diagnosis and surveillance using salivary cortisol. Pituitary. 15, 64–70 (2012)

    PubMed  Google Scholar 

  110. R. Pivonello, D. Ferone, W.W. de Herder et al., Dopamine receptor expression and function in corticotroph pituitary tumors. J. Clin. Endocrinol. Metab. 89, 2452–2462 (2004)

    CAS  PubMed  Google Scholar 

  111. C. de Bruin, R.A. Feelders, A.M. Waaijers et al., Differential regulation of human dopamine D2 and somatostatin receptor subtype expression by glucocorticoids in vitro. J. Mol. Endocrinol. 42, 47–56 (2009)

    PubMed  Google Scholar 

  112. R. Pivonello, M.C. De Martino, P. Cappabianca et al., The medical treatment of Cushing’s disease: effectiveness of chronic treatment with the dopamine agonist cabergoline in patients unsuccessfully treated by surgery. J. Clin. Endocrinol. Metab. 94, 223–230 (2009)

    CAS  PubMed  Google Scholar 

  113. E.F. Adams, M.J. Ashby, S.M. Brown et al., Bromocriptine suppresses ACTH secretion from human pituitary tumour cells in culture by a dopaminergic mechanism. Clin. Endocrinol. (Oxf) 15, 479–484 (1981)

    CAS  Google Scholar 

  114. C. Invitti, M. De Martin, L. Danesi et al., Effect of injectable bromocriptine in patients with Cushing’s disease. Exp. Clin. Endocrinol. Diabetes 103, 266–271 (1995)

    CAS  PubMed  Google Scholar 

  115. C. de Bruin, R.A. Feelders, S.W. Lamberts et al., Somatostatin and dopamine receptors as targets for medical treatment of Cushing’s Syndrome. Rev. Endocr. Metab. Disord. 10, 91–102 (2009)

    CAS  PubMed  Google Scholar 

  116. M. Rocheville, D.C. Lange, U. Kumar et al., Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288, 154–157 (2000)

    CAS  PubMed  Google Scholar 

  117. A.P. Heaney, M. Fernando, W.H. Yong et al., Functional PPAR-gamma receptor is a novel therapeutic target for ACTH-secreting pituitary adenomas. Nat. Med. 8, 1281–1287 (2002)

    CAS  PubMed  Google Scholar 

  118. X. Bertagna, R. Pivonello, M. Fleseriu, et al., Normal urinary cortisol with LCI699 in patients with Cushing’s disease: preliminary results from a proof-of-concept study. 15th Congress of the European NeuroEndocrine Association (ENEA 2012), Vienna, Austria; Klinische Endokrinologie und Stoffwechsel, 5, 22: abstract OC04 (2012)

  119. A. Godbout, M. Manavela, K. Danilowicz et al., Cabergoline monotherapy in the long-term treatment of Cushing’s disease. Eur. J. Endocrinol. 163, 709–716 (2010)

    CAS  PubMed  Google Scholar 

  120. M. Boschetti, F. Gatto, M. Arvigo et al., Role of dopamine receptors in normal and tumoral pituitary corticotropic cells and adrenal cells. Neuroendocrinology 92, 17–22 (2010)

    CAS  PubMed  Google Scholar 

  121. M.D. Culler, Somatostatin-dopamine chimeras: a novel approach to treatment of neuroendocrine tumors. Horm. Metab. Res. 43, 854–857 (2011)

    CAS  PubMed  Google Scholar 

  122. F. Pecori Giraldi, A.G. Ambrogio, M. Andrioli et al., Potential role for retinoic acid in patients with Cushing’s disease. J. Clin. Endocrinol. Metab. 97, 3577–3583 (2012)

    PubMed  Google Scholar 

  123. M. Fleseriu, B.M. Biller, J.W. Findling et al., Mifepristone, a glucocorticoid receptor antagonist, produces clinical and metabolic benefits in patients with Cushing’s syndrome. J. Clin. Endocrinol. Metab. 97, 2039–2049 (2012)

    CAS  PubMed  Google Scholar 

  124. F. Castinetti, B. Conte-Devolx, T. Brue, Medical treatment of Cushing’s syndrome: glucocorticoid receptor antagonists and mifepristone. Neuroendocrinology 92, 125–130 (2010)

    CAS  PubMed  Google Scholar 

  125. F. Castinetti, T. Brue, B. Conte-Devolx, The use of the glucocorticoid receptor antagonist mifepristone in Cushing’s syndrome. Curr. Opin. Endocrinol. Diabetes. Obesity. 19, 295–299 (2012)

    CAS  Google Scholar 

  126. J.D. Carmichael, M. Fleseriu, Mifepristone: is there a place in the treatment of Cushing’s disease? Endocrine 44, 20–32 (2013)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors received writing/editorial support in the preparation of this manuscript provided by Excerpta Medica, funded by Novartis Oncology Region Europe.

Conflict of interest

Dr. Colao has received unrestricted grants from Novartis for research in neuroendocrine and pituitary tumors and is a member of Novartis global and European boards; Dr. Boscaro has nothing to disclose; Dr. Ferone has received unrestricted grants from Novartis for research purposes and is a member of the Novartis advisory boards; Dr. Casanueva has received advisory board fees from Novartis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annamaria Colao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colao, A., Boscaro, M., Ferone, D. et al. Managing Cushing’s disease: the state of the art. Endocrine 47, 9–20 (2014). https://doi.org/10.1007/s12020-013-0129-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-013-0129-2

Keywords

Navigation